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Preface

This thesis, entitled “Resonances and Non-Adiabatic Effects in Quantum Dy-
namics” (subtitled “Resonances by Complex Methods and the Generalized Multi-
Configuration Time-Dependent Hartree Method”), is submitted to the University
of Copenhagen in partial fulfillment of the requirements for the Ph.D. degree.
The research and work on which this thesis is based was carried out partly at
the Department of Theoretical Chemistry, University of Copenhagen, partly at
the Laboratoire de Chimie Théorique, Université Paris-Sud, Orsay and finally at
the Laboratoire Structure et Dynamique Moléculaires, Université des Sciences et
Techniques du Languedoc, Montpellier.

It is with great pleasure that I thank Professor Gert Due Billing, who has acted
as my principal supervisor ever since I started at the University of Copenhagen.
His scientific achievements and impressive overview has been a tremendous source
of inspiration for my own investigations. I have also benefited greatly from his
many connections in the scientific community, which has equally been of invaluable
importance to the outcome of this project. This is especially directed towards my
“French connection”, Professor Claude Leforestier, who I have had the distinct
pleasure to work with over the last five years. During my many wonderful trips to
Paris, and recently Montpellier, Claude has taught me the fine art of grid methods
and numerous optimization techniques in molecular quantum dynamics. Over the
years he has shown continuous interest and support, and it is true to say that he is
the source of inspiration for at least half of the work presented in this thesis. I am
also graceful to Victor Sidis and Danielle Grimbert for discussions on the system
of H"+0,, and Nimrod Moiseyev and Hans-Dieter Meyer for useful comments
on respectively the numerical complex scaling method and the generalized multi-
configuration time-dependent Hartree method presented in this thesis. Finally I
wish to extend my thanks to Mads Ipsen, who patiently helped me typesetting this
thesis, and Christian Laursen for long discussions on the system of Hy+Cu(100).
Last, but by no means least I am very much indebted to my girlfriend Katrine who
constantly over the years have made me realize that there is more to life than just
science and quantum mechanics.






Survey of the thesis

The contents of this thesis represent my activities during my time of study for
the Ph.D. degree. The subject of this project is twofold. First we present a new
formulation and numerical studies of non-adiabatic systems in the framework of
the multi-configuration time-dependent Hartree (MCTDH) method. Secondly the
thesis deals with the description of molecular resonances by complex methods, and
we especially focus on the development of the necessary numerical tools for the
application of an exact method on systems where no analytical expressions are
available for the potential energy function. As such the two topics of this thesis
are not related, but as we shall demonstrate they are indeed connected in the sense
that all of the systems studied in the thesis turned out to display resonances. For
this reason the two topics have been assigned separate parts.

The presented thesis is, in more than one respect, the result of a very theoretical
study of molecular dynamics. Clearly is does not involve any experimental work
whatsoever, and moreover it is based on a wide range of concepts, theorems and
numerical techniques used in the study of “exact” quantum dynamics. It is my
personal experience that one of the major obstacles faced by many students in
learning quantum dynamics at this level of exactness, is their unfamiliarity with
many of these concepts and methods. Furthermore, since many of these required
concepts and numerical techniques are not discussed in standard textbooks, I have
dedicated the first part of this thesis to an introduction to these methods that form
the very basis of the work to be presented.

At an early stage of this Ph.D. project I made a fairly definite decision regarding the
stylistic form to be used in the presentation of this work. Rather than presenting an
abrute series of results and reprints from publications, dominated by discontinuous
jumps to literature references, as is “comme il faut” in many Ph.D. thesis, I have
rewritten the included papers and in general tried to make the presentation as
uniform and independent as possible. Thus, I have aimed at making explanations
clear and complete, and most of the derivations are hopefully given with enough
detail to make them easy to follow. Also resort to the frustrating phrase “it can
be shown that ...” is avoided wherever possible. However, this representation
of course entails the risk that what might appear relevant and complicated to
me might well be tiresome an trivial to the expert reader, in which case I hope
he or she can bear over with my style. This last comment is especially directed
towards part I, where some readers perhaps will find the details long and tiresome,
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yet presumably not trivial. For this same reason the impatient expert reader is
encouraged to skip the first part, however at the risk of loosing the coherence of
the thesis since extensive reference will be made to this introductory part in the
subsequent parts of the thesis.

Below follows a brief outline of the three parts of this thesis. The first part
includes the chapters:

Chapter 1 Introduction to some basic concepts in quantum scattering. We shall
especially focus on the definition of quantum flux and phase shift.

Chapter 2 Many of the central grid methods, numerical optimization techniques
and different choices of coordinate systems are introduced.

Chapter 3 The diabatic and adiabatic representations are defined and a simple
transformations scheme between the two is outlined.

Chapter 4 Presentation of some important time-dependent propagation tech-
niques.

The second part of the thesis deals with the formulation and subsequent testing
to the generalized multi-configuration time-dependent Hartree (MCTDH) method,
and includes the chapters:

Chapter 5 Introduction to time-dependent self-consistent field methods, and
a short presentation of a Gaussian formulation of the MCTDH
method.

Chapter 6 Presentation and one-dimensional test of the generalized MCTDH
method. This chapter is largely based on reference [1].

Chapter 7 Two-dimensional test of the generalized MCTDH method on the sys-
tem of Hy+Cu(100). This chapter is largely based on reference [2].

Chapter 8 Discussion and summary for this second part of the thesis.

The third part of the thesis concerns the study of molecular resonances using
complex methods, and includes the chapters:

Chapter 9 Introduction to resonances and complex methods.

Chapter 10 Study of molecular resonances in the systems of H*+QO, employ-

ing the optical potential method. This chapter is largely based on
reference [3].
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Chapter 11 Presentation and subsequent test of a new method for numerical
complex scaling. This chapter is largely based on reference [4].

Chapter 12 Discussion and summary for this last part of the thesis.

As a closing remark for this short survey of the thesis, I would like to stress that
neither me, nor my coworkers, can of course take the credit for the development
the MCTDH or the complex coordinate methods. I present extensions, improved
formulations and numerical studies of essentially well-established theories, and as
such “I built on the shoulders of giants”.
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Part 1

Quantum Scattering Theory






Introduction

In the past 10-15 years dramatic progress has been achieved in the field of more ex-
act theoretical studies of molecular chemical reactions. This progress is partly due
to the emerge of faster super-computers and partly due to the development of new
theoretical as well as experimental techniques. The access to fast computers (vector
and especially so called massive parallel-computers) have given theoreticians, like
myself, a very powerful tool to implement and solve numerical problems on a large
scale. This has naturally led to the modern trend in theoretical chemistry where
larger and larger systems are studied. Maybe the most important consequence
of the improved computer technology is the fact that theoretical chemist are no
longer satisfied with merely qualitative models for chemical phenomena. Conse-
quently large efforts have been and continue to be devoted to developing the more
exact models to the practical stage where reliable calculations can be carried out for
chemical reactions. In addition to this, the publication[5] of epoch-making “state-
to-state” (i.e. highly detailed) experimental measurements on chemical reactions
have undoubtedly motivated many theoreticians to move to more quantitative and
exact studies in order to analyze and interpret these experiments. A very good
example of this is the recent development of intense laser-fields, which has opened
up the exciting prospect of actually controlling chemical reactions on a microscopic
level. Thus, the modern trend in theoretical chemistry is to push the methodol-
ogy and the computers to give a detailed and accurate description of the reaction
dynamics in increasingly larger systems.

It is well recognized that quantum mechanical scattering theory provides the most
complete and detailed description of atomic and molecular collisions, which are
the fundamental microscopic events that underlies a chemical reaction. Thus, the
goal of quantum scattering theory is to give a rigorous description of the basic
mechanisms for a chemical reaction from a knowledge of forces operating at the
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atomic and molecular levels. However, usually when we think of a chemical reaction
we do not give much thought to the actual intermediate states produced during
such a collision. We tend to take the somewhat practical and pragmatic viewpoint
of an experimentalist who only want to know how he or she can go from reactants in
some initial quantum state, 4, to products in a selected final quantum state, f. The
motivation for this viewpoint is of course that in the laboratory the measurements
are made in the region of space asymptotically far from the target. Hence, it is
customary to characterize a specific chemical reaction using the short notation,

A + BC(i) ~21% AB(f) + C (1.1)

where no reference is made to the actual nature of the underlying dynamics. Since
the 1960’s, when crossed molecular beam experiments had developed to such an
extent that it was possible to study such state-to-state reactions, there has been
intense interest and effort devoted to the application of quantum scattering theory
to these reactions to calculate reliable values for the differential cross-section

dois Outgoing radial flux at {2 per unit solid angle

- (1.2)

(6,9) =

Total incident flux per unit area

This quantity, which gives a measure of the probability of producing the state-
selected molecule AB(f) from the reactant molecule BC(%) at the solid angle Q =
(0, ¢), provides the most detailed quantity that a reaction dynamical experiment
can give. As will be emphasized later, this is not to say that modern experiments
cannot provide more insight into the underlying dynamics of a chemical reaction
than offered by this quantity. It merely points out the important fact that from the
knowledge of measured differential cross-sections one can, in principle, reconstruct
the intermolecular potentials. Crossed molecular beam experiments enable these
differential cross-sections to be fully resolved with respect to 8. Averaging over
the scattering angles produce the integral or total cross-section

5(B) = [d00L(B,6,9) - / d / cos 6) 71 (B,0,4) (19

1For intermolecular (or isotopic) potentials which depend only on the separation of the two
molecules, the scattering is cylindrically symmetric with respect to the axis of the incident beam
of molecules in the relative-motion picture. Thus the scattering depends only on the deflection
angle # and not on the azimuthal angle ¢.
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which can, in principle, be measured in less sophisticated bulk experiments. By
Boltzmann averaging these integral cross sections over all the possible initial and
final states one can next calculate thermal rate constants which, in turn, can be
measured quite directly in a bulb. Thus, the theory of quantum mechanical scatter-
ing, which is the starting point in the derivation of an accurate theory of chemical
reaction dynamics, provides a crucial link between the results obtained in detailed
state selective molecular beam experiments and thermal average bulb measure-
ments.

As indicated several times above, the rigorous study of chemical reaction dynam-
ics, now a days goes far beyond the simple state-to-state description mentioned
so far. The goal of modern quantum scattering theory is not only to give an ac-
curate estimate of detailed quantities like the differential cross-section, eq. (1.2),
but also to give a physical insight to the explicit quantum mechanisms, which
take us from the reactants to the products. This trend in quantum dynamics is
strongly influenced by the resent emerge of the so-called “pump-probe” experi-
ments, where very short laser pulses are used to take “snap-shots” of the chemical
reaction as the time evolves. Using this advanced technique, it has now become
possible to actually “see” (i.e. measure) and test for quantum effects that the the-
ory has predicted for years. Quantum effects have of course always been present
in the state-to-state experiments, but they have been “hidden” in the sense that
the measurements were not accompanied by a detailed analysis of the quantum
system as the actual reaction evolved in time — an examination which often offers
an explanation or cause for the explicit quantum effects involved. These quantum
effects are typically tunneling, vibrational zero-point energy, classically forbidden
transitions, non-adiabatic coupling and the formation of resonances or complexes,
some of which will play a central role in this thesis. Consequently, only a full
quantum mechanical scattering theory can give a rigorous description of these ex-
periments. This is not meant to imply that it is necessary, or even desirable, to
approach all scattering studies in this manner. It is well recognized that if one is
interested only in thermal reaction rate constants, then transition-state theory is
often adequate. There are also several examples where classical trajectory simula-
tion methods have been applied to describe more detailed state-to-state properties
of reactions. Furthermore, there are a variety of approximate quantum mechan-
ical and semi-classical methods (where only some of the degrees of freedom are
treated quantum mechanically, the remaining classical) that are satisfactory and
useful in various special situations. However, these models are, at least to some ex-
tent, approximate and often cannot give complete account for quantum mechanical
phenomena encountered in modern experiments, and so only a rigorous quantum
scattering calculation is guaranteed to be correct. Hence, it is very important to
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develop these capabilities to as great an extent as possible in order to be able,
in some cases at least, to provide a “completely” reliable theoretical description.
Such is the point of view of this thesis.

Throughout the rest of this chapter we are going to introduce some of the central
concepts needed for the discussions in the subsequent parts of this thesis. In
section 1.1 we will define the important quantum fluz, entering the definition in
eq. (1.2). This concept, which serves as the quantum analog to the classical current
of particles, is evidently vital for the studies in part II, and as shown in the last
part of section 1.1, it is also useful when studying resonances, which will be the
topic of part III. Section 1.2 considers the simple but nevertheless very illustrative
case of an elastic scattering and introduces the concept of scattering phase shift.
This concept will be especially important in part III. However, this section is also
included to make a historical connection to the traditional formulation of quantum
scattering where reference is only made to the asymptotic states of the system,
i.e. the initial and final quantum states. Throughout the rest of this thesis we will
take a somewhat different viewpoint, in which explicit reference will also be made
to the intermediate states produced during the collision.

1.1 Definition of quantum flux

Consider the rate of change of the probability of a particle being in a finite volume

9 = 9 pAw 0P
an) = o [ e
_ /Vdaf{\l,*(ﬁt)q,(ﬁt)+\IJ(F,t)\iJ*(F,t)}
= 2Re/d37?\1’*(77,t)‘i’(77at) (1.4)

We now insert the celebrated time-dependent Schrodinger equation

9 .
h—U (7, t) = HU(T,
zhat (7,t) (7,t)

[_gﬁ T V(f)] W (7, 1) (1.5)



1.1 Definition of quantum flux

into eq. (1.4) and assume that V() is real?®

%pv() - 2Re/Vd3*‘I'*Z(h )< 7 Sog 71y + V() (F, t))
ih

=Re[
L

/Vd3f\11*(ﬁ HV2U(7, t)] (1.6)

Next this volume integral is converted to a surface integral by invoking integration
by parts®

/V B (7 )7 ) = ]{ P8, (7, 8V (7 1)

- / BP*FVU* (7, t) - V(7 1) (1.7)
\%4

We note that the last term in eq. (1.7) is real, and thus eq. (1.6) finally reduces to

~

%PV() Re?{dza-w*(f,t)@ﬁnp(ﬁt)z—j[ g - j (7 1) (1.8)

N S

where we have defined the non-linear vector operator

J[0(7, 1) = Re | U (7, ) 0 (7, 1) (1.9)
1
where 1A3 = —ihV denotes the usual linear momentum operator. The physical in-

terpretation of eq. (1.8) follows immediately when we note that the probability,
Py, can change only by “particles” flowing in or out through the surface S inclos-
ing V, and thus the rhs. of eq. (1.8) must express the total quantum mechanical
fluz. Consequently we can finally identify j[@(f’, t)] in eq. (1.9) as the quantum
mechanical flur density, or probability current density vector, i.e. the number of
“particles” per unit time that cross a unit surface at the point 7. We can now
make the following important conclusions:

2We shall consider the case with a complex potential later.
3In this integral equation and throughout the rest of this chapter we use the notation &, =

7/
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e If the wave function is time-independent then so is the flux, i.e. steady-state

fluz.

e Unlike the classical flux (j = gPV) the quantum mechanical flux is a non-
linear operator giving rise to complicated interference terms between for
instance incoming and outgoing parts of the total wave function.

e The flux vector j and the probability density |¥|* satisfy the equation 8| ®¥|* /0t
+V -j = 0, which is analogous to the classical equation of continuity®. This
follows readily® by invoking the divergence theorem on eq. (1.8).

e If the wave function is real then j[\II(F, t)] = 0. Consequently quantum
mechanical scattering necessarily involve compler wave functions.

§B+C &)
Q
<

$+BC

o mec

Figure 1.1: Contour-plot of the potential energy surface for a simple three-particle system which
is confined to move on a straight line — i.e. collinear system. Note the two arrangement channels
AB+C and A+BC. The system is enclosed in the box S which is composed of the two parts,
Sap+c and Sa o, each including one of the channels.

4The classical equation of continuity reads as % +V- p¥ = 0 where p is the density and ¢
the velocity.

PFirst we invoking the divergence theorem, [, d*7 V-j= $s d°€, .3, and then we make use of
the fact that V is arbitrary.



1.1 Definition of quantum flux

Now, let us shortly consider the very important case when V' in eq. (1.5) is not a real
potential, but rather a negative imaginary potential (nip), i.e. V. — V,; = —iV
where V' > 0. It then follows immediately from eq. (1.6) that the extra term

—%Re/ BRV (7, 1)V (F) U (7, 1) < 0 (1.10)
1

is added to eq. (1.8). Hence we conclude that flux is removed from the system when
adding a negative imaginary potential®. This actually forms the basis for several
very useful techniques which will play a central role in this thesis. In part II we
shall discuss this feature in the context of time-dependent dynamics, and in part III
we shall use negative imaginary potentials to locate resonances with.

Let us close this section by considering a simple, but nevertheless typical appli-
cation of the flux concept, which nicely puts the two topics of this thesis in a
perspective. It immediately follows from the definition that

Py (tr) — Py(to) = —]{d%z F() (1.11)

where we have defined the time-integrated flux F(7) = til dt 7 [U(7,t)]. Now,
imagine that the system under consideration is a simple collinear” three-particle
system as illustrated in figure 1.1. The two arrangement channels are denoted
respectively AB + C' and A 4+ BC, and we note that the surface S enclosing the
coordinate space V' can be partitioned into two parts, Sapic + Satsc, which
include each of the two channels. Next, assume that at ¢t = 0 the wave function
is normalized, i.e. Py(0) = 1, and that after some time, t; = t*, the reaction is
completed, i.e. Py(t*) = 0. Thus, eq. (1.11) reduces to

/dza-f(F)+ / d’e, - F(7) =1 (1.12)

SAB+C SA+BC

However trivial this equation might appear, it expresses the fundamental concept
of conservation of particles (i.e. flux), and as will be demonstrated in part IT of
this thesis it is very useful when testing the numerical implementation of a time-
dependent scattering calculation. Nevertheless, important situations may occur

6These negative imaginary potentials are often also referred to as optical potentials, because
they imitate an optical device (e.g. particle analyzer) which removes flux from a particle beam.

TA collinear reactive system is a system where all the involved particles move on a straight
line.
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where Py (t*) > 0, even for large values of ¢*, such that eq. (1.12) does not hold®.
This corresponds to the very interesting case where the system, i.e. wave function,
is trapped in some intermediate quasi-bound state?. The study of the formation
of such so-called resonances forms the very basis of part III of this thesis.

1.2 Elastic scattering

In this section we will present a theoretical description of a simple but typical three
dimensional scattering experiment. Many of the results derived in this section
can be found in standard textbooks, but nevertheless I have decided to include
this section for the following reasons: First of all, it is my personal belief and
experience that the topic of this section does not receive much attention in quantum
scattering courses taught now a days, and as such cannot be considered elementary
knowledge. This point is also supported by the fact that many modern textbooks
tend to say very little about this topic, or sometimes even completely leave it out.
Secondly, this section will establish, at least formally, the significant link between
the experimental observations made on dynamical systems (cf. eq. (1.2) and (1.3))
and the corresponding theoretical description of it. This thesis strictly considers
only the latter class of problems, but for obvious reasons it is very important to
establish, or at least point out, this connection between the two very different fields
of quantum dynamics. This leads us to the final, and perhaps most importantly,
reason for including this section, namely, to give an experimental motivation for
the theoretical studies of resonances. So, in a sense this section will also serve as
a conceptual toolbox for the introductory discussions in part III.

To keep the notation as simple as possible we are going to restrict ourself to a
simple elastic collision, where excitation of internal (e.g. vibrational or rotational)
degrees of freedom is neglected. Furthermore, we shall only discuss the key features
of this dynamical system, and we just note that the generalization of the presented
results to non-elastic systems is readily made. Thus, using the notation introduced
in eq. (1.1) we have

Elastic

A+ BC(i) 225 A + BC() (1.13)

where A labels the projectile that are scattered by the target BC!? . Theoretically
the two particles are governed by quantum mechanics and the complete system

8Note that this is of course not in conflict with the law of conservation of particles, it is merely
a consequence of Py (t*) > 0, 4.e. t* is not chosen large enough.

9For the time being we shall ignore the possibility of the system supporting true bound
intermediate states.

10We note that in the theorist’s eye, there is no distinction between the projectile and the
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is therefore best described by a wave function, W;(7). However, to facilitate a
physical interpretation we partition W(7) as

Ui(r) = ¢g(7) + ¢g(7) (1.14)

where ¢7 () denotes the incident beams wave function and 1z () the scattered wave
function. The incident beams wave function, with a constant linear momentum of
hk, is mathematically represented by the plane wave

¢E(F) — eiq-f‘: eikrcose (1‘15)

This wave function is clearly not normalizable in the usual £2(V') sense'!, which
for the time being we shall just leave as a mathematical curiosity'?. On physical
grounds we will assume that we can write the asymptotic form of the scattered
wave function as

ikr

lim [9z(7)] = fu (0, ¢)67 (1.16)

T—00

This expression states that the scattered wave function has the same shape as the
incident wave function (i.e. elastic scattering), that the intensity of the scattered
beam falls off with the inverse square law, and that the amplitude of the scattered
wave, fg(0,¢), is independent of the details of the experiment. Consequently the
asymptotic form of the total wave function is assumed to take the form

> ikr
Tim [W5(7)] = €7 + f(0, ¢)67 (1.17)
which can be rearranged to give the formal definition
fe(0,¢) =re™™" lim [W() — (7] (1.18)

target particle. An experimentalist may however view it differently because the target is usually
fabricated from stable, workable, or abundant material, while the beam particle may be rare,
unstable or even have an exceedingly short lifetime.

1Some times the plane waves are “-normalized” leading to the prefactor (27)~3/2. However
to keep the notation as simple as possible we shall ignore this factor throughout the rest of this
section.

12Physically this non-normalizability of the plane waves can be understood from the Heisenberg
uncertainty principle, ApAr > g The plane wave has a unique momentum, i.e. Ap =0= Ar ~
00, such that the wave function has a constant (unit) probability amplitude in the configuration
space. However disturbing and unphysical this might appear, it is a direct consequence of the
fact that we are using a strictly time-independent description of a dynamical system which is
inherently time-dependent.
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This universal amplitude function is referred to as the scattering amplitude. Next,
using the definition of the differential cross-section, given in eq. (1.2), the expression
for the flux-operator derived in the previous section, eq. (1.9), and the asymptotic
form listed in eq. (1.17), we obtain the following simple expression for the elastic
differential cross-section

dO’el

0 (B:0,8) = f=(6,9) (1.19)

It should be clear from the above that the scattering problem is now reduced to a
study of the appropriate boundary conditions of the quantum system, and evidently
the scattering amplitude is the central quantity which facilitates an immediate
connection to experimental measurements. As a prelude to the derivation of an
explicit expression for the elastic scattering amplitude, entering eq. (1.17), we write
the plane wave, eq. (1.15) as a “partial wave expansion” [6]

$r(M) =4 > " i (6) Yom () je(kr) (1.20)

=0 m=—{

where Yy, (€,) are spherical Harmonics and jy(kr) are spherical Bessel functions
illustrated in figure 1.2. Because the j;(kr)’s have the boundary properties'®

i) = {(kr)f/(zzz + 1) for kr — 0 1.21)

sin (kr — ¢m)/kr  for kr — oo

each Bessel function, j,(kr), has approximately vanishing amplitude when kr << ¢
and asymptotically oscillatory behavior for kr >> £. This should also be visible in
figure 1.2. The physical motivation for the expansion in spherical Bessel functions,
eq. (1.20), now follows: If the plane wave is incident upon a finite ranged potential,
V(r), there will always be some partial waves which lie outside of the potential and
are therefore unaffected by it. This is simply a consequence of some of the jy(kr)’s
being essentially zero in the coordinate space in which the potential exists. Thus,
if V(r) is finite, then so is the number of scattered partial waves in the sum of
eq. (1.20). For the total (distorted) scattering wave function, Uz, we next assume
the same form for its partial-wave decomposition, i.e. we attempt to write ¥z in a
basis-set of spherical Harmonics,

BThroughout the rest of this section we use the notation (20 +1)!!'=1-3-5---(20+ 1).
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Figure 1.2: Plot of the first five spherical Bessel functions, j,(kr), ¢=0,1,...,4. Note that
je(kr) = 0 for kr << £ and oscillatory for kr >> (.

00 l
V() = 4r Y Y () Vi) P (1.22)

£=0 m=—{¢

where the radial functions u,(kr) still remain to be defined. To do this we could in-
sert eq. (1.22) into the time-independent Schrédinger equation, which, in spherical
center-of-mass coordinates, reads as

B2 92 12

“aurar’ T etV O D (1.23)

where L2 is the total orbital angular momentum. However, before we do this, and
attempt to solve the resulting equations for u,(kr) over all the coordinate space,
we recall from the introduction that the purpose of this section was merely to
establish the theoretical tools needed for the calculation of the differential cross-
section. Thus, from eq. (1.19) and (1.18) we see that we actually only need to solve
eq. (1.23) in the asymptotic region of r» where V(r) = 0. The corresponding “free”
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second-order differential Schrodinger equation!* has two solutions

e o) = e} o

which are easily expressed in terms of respectively spherical Bessel and Neumann
functions|6]

F[(k?”)
Gg(k?")

krjo(kr) (1.25a)
—krng(kr) (1.25b)

We note that Fy(kr) is the regular solution of eq. (1.24) (i.e. non-singular at the
origin), and G(kr) is the corresponding irreqular (divergent) solution. More specif-
ically we have the boundary behaviors

- Fo(kr)\ _ [ (kr)H/ (20 + 1)1
Ry {Gi(kr)} B {(212+ 1)!!/(kr)f+1} (1.26)

and

. Fy(kr) sin (kr — ¢m/2)

1 = 1.2

kr o3 oo {Gg(kr) cos (kr — 4 /2) (1.27)

At this point it is tempting to assume that since the radial wave function, u,(kr),
must always be regular for any finite-ranged non-singular potential, then the ir-
regular Gy(kr) solution can be excluded. However this is not correct since the
two free solutions form a complete set whenever V(r) = 0, and thus the full wave
functions must be a linear combination of the two functions in the region outside

the potential’s range, say for » > R. For reasons that will soon become clear we
choose the following combination®® for the free part of the radial functions

we(kr) - e {cos (n¢) Fy(kr) + sin () Go(kr)} (1.28)

14To obtain eq. (1.24) we have first inserted eq. (1.22) into eq. (1.23), with V(r) = 0, and made
use of the fact that the spherical Harmonics are eigenfunctions of the orbital angular momentum,
L2Yym(€:) = h20(€ + 1)Ym(€,). Next we have multiplied the resulting equations by Y, . (€x),
integrated over €y (i.e. the polar angles defining the direction of the linear momentum) and finally
make use of the fact that the spherical Harmonics are orthogonal.

15Note that at any case this is a “one-parameter” problem in the sense that if we choose one
of the contributions (e.g. G¢(kr)), then the other one (Fy(kr)) is uniquely determined from the
relevant boundary condition on the radial wave function.
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where we have introduced the real’® energy-dependent constant n,. The physical
interpretation of 7, follow immediately if we examine the asymptotic behavior of
eq. (1.28)

lim u,(kr) = exp (ine)sin (kr — £x /2 + ny) (1.29a)
r — 00
1 ine ikr _ —ikr
= MT (62 e kr _ e k ) (129b)

where we have made use of eq. (1.27). Eq. (1.29b) follow by decomposing the
sine!” into the exponentials representing respectively the outgoing and incoming
waves. Eq. (1.29a) clearly shows that u,(kr) has the same asymptotic form as the
free wave, cf. eq. (1.21), only with its phase shifted by 7, which, according to
eq. (1.29b), is equivalent to a shift of the outgoing wave’s phase by 27, relative
to the incoming wave. Consequently 7; is referred to as the scattering phase-shift.
If we next collect eq. (1.20) and (1.21), and eq. (1.22) and (1.29b) we obtain the
following asymptotic forms

lim [¢z(7)] =

T—00

¢
Z &) Yo (€,) (€77 — 7Ty (1.30a)

lim [W5(7)] =

4 o0

2y 2
o0 V4

47; 3 Z ) Yo (8,) (€247 — ¢=%7) (1 30b)
(=0 m=

The explicit expression for the scattering amplitude next follow immediately from
the definition in eq. (1.18)

(%) l
a7 . /o o
fe(6) = 52 ;m;e Y (€) Yem (&) (Se — 1) (1.31a)
= % D (26 + 1) Py(cos §)e™ sinn, (1.31b)
£=0

16y, is real as long as only the elastic channel is open. When absorption is included, i.e. any
process removing flux from the incident channel, then 7, as defined in eq. (1.28), becomes a
complex number with a positive imaginary component.
17We have made use of the identity
e2imei(k’r—€ﬂ'/2) _ e—i(kr—hr/2) e2ine pikr _ o—ikr

2 - 2it+1

e sin(kr — 0m/2 + 1) =
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where we have defined the celebrated unitary S-matrix S; = €7 in eq. (1.31a)
and used the following identity to obtain eq. (1.31b)

L

L iy . o .
Pr(cos ) = P& - &) = 57— > Y (8) Yem(Er) (1.32)

m=—

where Py(cos#) are Legendre polynomials. According to eq. (1.19) the elastic dif-
ferential cross section is then simply obtained from the relation %2 (¢) = | fe(0).
Finally, using the definition in eq. (1.3) and the orthogonality relation of the Leg-
endre polynomials'®, the integral cross-section is readily obtained as

4 o0
ou(E) = k—g 3" (20+ 1)sin® (1.33a)
£=0
T (e ¢]
= EZ@H 1)|S, —1]2 (1.33b)

~
Il

0

This finally concludes our brief discussion on introductory quantum scattering,
which as mentioned before, provides the formal link to experimental measurements
of differential and integral cross-sections.

18The Legendre polynomials satisfy the orthogonality relation[6]

2

= —(5 1
20+1 4t

[ dzPi(a)Ps (2



Numerical representations

In this chapter we shall briefly discuss some of the problems and corresponding
solutions which I recounted during the numerical formulation of the quantum cal-
culations to be presented in part II and III. However, all of the numerical questions
raised in the chapter, and most of the solutions, are quite general in the sense that
they are fundamental to every quantum mechanical calculation on a reactive sys-
tem. In section 2.1 we are going to discuss the so-called coordinate-problem, and
in section 2.2 we shall present the concepts, tools and computational techniques
used for the numerical representation of the quantum systems that are studied in
the subsequent parts of this thesis.

2.1 Coordinates

One of the first major challenges when setting up a reactive quantum calculation
is to choose an appropriate set of coordinates in which the corresponding formu-
lation is convenient for the subsequent numerical implementation. In short, the
problem is that the coordinates which most conveniently describe the reactants of
a chemical reaction are not necessarily particularly convenient for describing the
products, and vice versa. Therefore, in order to obtain a complete description of
the reactive scattering event, one has either to define a new set of inevitable more
complicated coordinates which somehow covers the complete configuration space,
or else simply work in an over-complete coordinates space where one simultane-
ously retain all the convenient sets of coordinates, both for the reactants and the
products. The fact that this coordinate problem encumbers quantum calculations
so much might at first come as a surprise, since it is well known that classical tra-
jectory calculations on quite complicated reactions have been performed for some
time. However, the answer to this enigma is of course straight forward. Quantum
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mechanical calculations, by virtue of the uncertainty principle, describe all regions
of the coordinate space at once, whereas classical trajectory calculations effectively
access only a single point in this space at a time. This actually simplifies the clas-
sical calculations so much that just about any well defined coordinate system will
do.

Below we are going to present three different types of coordinates which will be
used in part II and III. These coordinates all have their pros and cons, as we shall
soon see, but they are nevertheless the most widely used systems of coordinates
in reactive quantum calculations. To keep the notation as simple as possible, we
shall continue to use the collinear three particle system, introduced in the previous
chapter (cf. figure 1.1), as the working example.

2.1.1 Jacobi coordinates

The Jacobi coordinates are the natural starting-point for any discussion on co-
ordinates in reactive scattering. Different choices of Jacobi coordinates exist, but
common to all of them is that by construction they all lead to a kinetic energy ope-
rator without cross-terms. This nice feature of the Jacobi coordinates, and the fact
that they are readily generalized to multi-dimensional systems makes them very
popular. Especially the so-called mass-scaled Jacobi coordinates are convenient as
they lead to a very simple form of the kinetic energy operator with only one com-
mon mass-factor. Taking the simple collinear three particle reaction as the working
example, increments of the reactant and product mass-scaled Jacobi coordinates,
(R, 7,) and (R.,7.), are depicted in figure 2.1. These mass-scaled Jacobi coor-
dinates are defined in terms of the usual (unscaled) atom-diatom displacements,
(R, "), as

a’’ a
R,=a,R, and r,=a;'7 (2.1)

where the channel-dependent mass-scaling factor «, reads as

by = | Telmo ) e =
,u'Mtot

Ma e (2.2)
Mtot
and where M, is the total mass and p the three-atom reduced mass. Thus, R,
is a mass-scaled distance between A and the center-of-mass of BC, and r, is a
mass-scaled distance between B and C. It should be clear from figure 2.1 that
either set of mass-scaled Jacobi coordinates alone provides a complete description
of the collinear coordinate space. However, it should be equally clear that while
(R4, 7,) are better suited for describing translational and vibrational motions in
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Figure 2.1: Tllustration of the increments of the two different sets of mass-scaled Jacobi coordi-
nates, (R4, 7,) and (R.,r.), for a simple collinear atom-diatom reactive system. Asymptotically
R describes the translational motion in the corresponding atom-diatom arrangement, and r de-
scribes the diatomic vibrations. The axis labels are (R,,7,), explicitly defined in eq. (2.1), and
the potential contour lines are the same as in figure 1.1.

the A+BC channel, (R.,r.) are more appropriate for a corresponding description
in the AB+C channel. Consequently it seems natural to simply retain both sets
of coordinates at once, using each set for convenience as required. This clearly
leads to an over-complete description of the configuration space which result in
a potential coupling of the translational and vibrational motions in the different
arrangement channels. This non-local coupling between states in the reactant and
product channels appear as a type of exchange integrals between basis-functions
in different chemical arrangements. These exchange integrals are simply a mathe-
matical manifestation of the interactions which cause the reaction to proceed, and
they are quite analogous to electron exchange interactions in LCAO-like quantum
chemistry that arise from matrix elements in which the electron coordinates have
been exchanged!. Thus, the coordinate-problem, related to the use of Jacobi coor-

In the LCAO-approximation the molecular orbitals for an electron are expanded in atomic
orbital basis-functions utilizing the coordinates of the electron with respect to the different nuclear
centers. In other words, the central idea in the LCAO model, similar to that of a basis-set
expansion in functions expressed in different Jacobi coordinates, is a multi-center expansion.
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dinates in reactive scattering, can be solved, but it is nevertheless a complicating
feature of these coordinates. Indeed a comprehensive account of such a formula-
tion for the general case of a three-dimensional atom-diatom reaction, was given
by Miller[7] as early as in 1969.

2.1.2 Natural collision coordinates

One way to overcome the coordinate problem discussed above is to use natural col-
lision coordinates. These coordinates, which were introduced by Marcus[8] more
than thirty years ago, are best characterized as a curvilinear reaction coordinate
that swings smoothly from the reactant to the product and a perpendicular vibra-
tional coordinate. This is illustrated in figure 2.2 for the collinear case. Here ds

Figure 2.2: Tllustration of increments of the natural collision coordinates, (s,v), for the collinear
system. The translational reaction coordinate, s, is defined along the minimum energy path,
shown as the dashed line going from the reactant to the product arrangement channel. Asymp-
totically v describes the vibrational motion of the corresponding diatom. The axis labels are the
same as in figure 2.1.

is the increment of the translational reaction coordinate s, which asymptotically
describes the mass-scaled separation between atom A or C and the pair BC or
AB. Different choices of this curvilinear coordinate, s, exist, but the most obvious
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one is the reaction-path coordinate which is defined as the minimum-potential-
energy path. Like this, the natural collision coordinates have the great advantage
of a direct connection to the concept of a reaction path, which we shall utilize in
chapter 7. The s coordinate simply follows the reaction path from the entrance
channel with minus infinity over the saddle-point, which is defined as the origin, to
the exit channel with plus infinity. Similarly, dv is an increment of the vibrational
coordinate v, which asymptotically describes a mass-scaled separation of the two
atoms in the pair BC or AB. Thus, v denotes the shortest distance from any
point in the configuration space to the reaction path, and s denotes the distance
along the reaction path to that point. Clearly these natural collision coordinates
are convenient in the simple two-channel two-dimensional case exemplified here,
but the problem is how to generalize these coordinates to three-dimensional and
multi-channel scattering situations. In three dimensions, at each value of the con-
served total angular momentum number, the vibrational coordinate, v in figure 2.2,
becomes a two-dimensional rot-vibrational surface, which can have quite compli-
cated metric properties, making the internal coordinate somewhat more difficult
to define and grasp. Furthermore, in the case of more than two open channel the
idea of a well defined reaction path, s, looses its meaning. However, the earli-
est exact three-dimensional calculations by Kuppermann|9,10], on the symmetric
H+ Hs reaction, were actually performed using extensions of these natural collision
coordinates. He essentially introduced “matching surfaces” between the three ar-
rangements, but this is clearly a great deal easier to do for the symmetric reaction
he studied then it is for anything else. Thus, all in all these coordinates are not
very popular in the cases for multi-dimensional or multi-channel systems.

2.1.3 Hyperspherical coordinates

The most annoying feature of natural collision coordinates is probably the need to
define matching surfaces between the different arrangements whenever more than
one reaction channel is open (i.e. energetically allowed). In order to overcome this
problem “routinely”, while at the same time retaining many of the advantages
that these coordinates do have to offer, one can turn to the so-called hyperspher-
ical coordinates which will be the last set of coordinate which we will mention.
Hyperspherical coordinates have been defined in several ways in the scientific lit-
erature, but characteristic to all of these coordinate systems is that they consist of
a hyper-radius and a remaining set of hyper-angles. The hyper-radius, is a direct
measure of the overall extent of the configuration space and plays the role of the
reaction coordinate as mentioned above. The hyper-angles define the arrangements
of the particle made up by the reactive system. Thus, like for the natural collision
coordinates, the major advantage of these hyperspherical coordinates is that they
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Figure 2.3: Illustration of the hyperspherical collinear Delves coordinates[11]. p is the hyper-
radius which describes the overall extend of the configuration space, and the hyperangle, ,,
describe the arrangement of the three particles.

describe the arrangement channels in an equivalent fashion. Once again taking
the simple collinear three-particle reaction as the working example we define the
hyper-radius, p, and the hyper-angle, 6, as

PP =R2+712 and Oy = tan ' (my/p) (2.3)

where (R,,r,) are the mass-scaled Jacobi coordinates, eq. (2.1), and the reduced
mass, , is define in eq. (2.2). Both coordinates, and their increments are il-
lustrated in figure 2.3. It should be noted that the hyper-radius (as opposed to
the hyper-angle) is universal, in the sense that it can equally well be defined in
terms of the mass-scaled Jacobi coordinates (R,,r.) corresponding to the AB + C
arrangement. The two possible hyper-angles are in fact related by 6, + 6, = 0,
where 6, = tan™!(m; /) is the skewing angle also shown in figure 2.3. While these
collinear hyperspherical coordinates, due to Delves[11], are essentially unique, sev-
eral different possibilities arise when one moves to three dimensions. We shall just
mention the symmetric coordinates introduced by Johnson[12-14] as this will be
our choice of coordinate in a brief discussion in chapter 8 — or rather a symmetry
adapted variant of these. The distinct advantage of these coordinates (which are
actually an extension of hyperspherical coordinates due to Smith[15]) is that the
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five hyper-angles are explicitly subdivided into two sets: Three internal or config-
uration coordinates, (p, 0, #), which determine respectively the size (p < 0) and
shape (0 < 0 < 7/2,0 < ¢ < 4m) of the triangle made up by the three parti-
cles, and a set of three external coordinates, («, 3,7), which are the Euler angles
that rotate the space-fixed system into a body-fixed system. Some of the other
hyperspherical coordinate systems defined in the scientific literature, simply group
the five hyper-angles together on an equal footing. This is for example the case
for the, once very popular, hyperspherical coordinates introduced by Morse and
Feshbach[16]. The reason why this explicit separation of the coordinates into an
internal and external set is so important, is of course that the potential energy
is only a function of the internal coordinates. The mapping of the Johnson Hy-
perspherical coordinates to Cartesian coordinates for a point in the configuration
space is particular simple[12]

= psinfcos¢ (2.4a)
= psinfsin¢ (2.4b)
z = pcosf (2.4c)

Thus, (p,0,®) are simply the spherical polar coordinates for a point in the body-
fixed frame of reference. If we restrict ourselves to the situation of zero total
angular momentum, then the kinetic energy term also depend only on the internal
coordinates, and no longer on the orientation angles. Hence, the J = 0 three-atom
reaction can be formulated in three hyperspherical coordinates which conveniently
describe the different arrangement channels in an equivalent fashion.

2.2 Grid methods

Accurate methods and techniques for the numerical representation of quantum
systems have been sought since its very inception. Generally speaking, there exist
three different types of approaches to this numerical problem in quantum mechan-
ics. The first approach represents the states of the quantum system as ket vectors
in the “somewhat abstract” occupation number space. In this so-called second
quantization of the system, these ket vectors do not contain an explicit reference
to any particular basis-set, as is the case in the conventional “first quantization”.
The reference to a basis-set is instead built into the second quantization operators
in such a way that there exist a correlation principle between the first and second
quantization?. The second quantization formulation is very popular in the field of

2The form of this correlation depend on the nature of the particles, and for the fermions it
is given by the Condon-Slater rules. Thus, a characteristic feature of the second quantization is
also that the statistics of the system is build into the formulation itself.
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electronic structure theory, but has not received as much attention in scattering
calculations. The second type of approach is best characterized as a state expan-
ston of wave function in some finite basis-set. Thus, this approach is often referred
to as the finite basis representation or just FBR in the literature. This technique
is very popular in quantum calculation for reasons that will soon become clear. In
fact, as we shall see in the next chapter, this approximation actually lies at the
very heart of the definition of the electronic potential energy surfaces, which in
turn are the starting-point in every scattering calculation. The last approach is
to use a discretized representation of the quantum system (i.e. the operators and
wave functions) on a grid or set of points, which will be the topic of this section.
As these grid methods form the very basis of all the studies presented in this the-
sis, we will start out by briefly presenting some of the more important stages in
the development of these techniques. This is primarily done to put the important
Fourier and DVR methods, to be mentioned below, in perspective.

2.2.1 General collocation methods

Point wise representations of quantum systems actually dates back to the very
beginning of quantum mechanics. In the late twenties Hartree[17] and Hylleraas[18]
introduced the so-called finite difference method, hereafter denoted FD. In this
representation the Schrodinger equation is discretized on a grid as

[T+V°-E]-¥=0 (2.5)

where ¥ is the column vector of the amplitudes on the grid, V? is the diagonal
matrix representation (denoted by the D) of the local potential in the grid points,
and T is the (sparse) matrix representation of the non-local kinetic energy operator,
obtained from a Taylor series expansion of the latter on the grid. Before the
emerge of real super computers in the eighties and massive parallel computers in
the nineties, the FD method had not really proved advantageous in more than
two dimensions, as a very large number of grid points was necessary to obtain an
accurate representation of the kinetic energy term. This problem of representing T
in an accurate way was more or less overcome with the introduction of the Pseudo-
Spectral or collocation methods in the early eighties. Generally these methods
take point of reference in a finite basis representation (FBR) of the kinetic energy
operator,

Tun(z) = Y (| Tty )t () (2:6)



2.2 Grid methods

25

where we have assumed that the finite basis-set, {u,(z), n=1,..., N}, is or-
thonormal. The wave function is then expanded in this basis-set, and as in
the original FD method the Schrodinger equation is next discretized on a grid
to give the very easy handling of the local potential. Thus, at each grid point
{z,, p=1,...,N} we have

Z [Z ((umﬁ‘\un)um(xp)) + (V(zp) — E) un(zp)| Cr, =0 (2.7)

n=1 |m=1

where C,, are the expansion coefficients of the wave function, ¥(z). If we now
introduce the collocation matriz, g’pn = uy(p), such that ¥ =R - C, eq. (2.7) can
be recast into
BT+ (V7 - ED)B]-C
R-T-R'+VP-EJ¥ =

(2.8a)
(2.8b)

o 1o

where we have obtained the last equation by inserting the unit matrix R™* - R in

front of C. Next, multiplying eq. (2.8a) by R™" from the left we arrive at the final
working equation for the collocation method

T+R™-Y°-R- Bl -C=0 (29)

This equation clearly shows that for an ill-conditioned (i.e. singular) collocation
matrix, R, the finite-basis representation of the potential, (u,,|V |u,) = [R™'- V" -
R],nn, will be very inaccurate (to say the least). To “routinely” overcome this
serious numerical problem of the general collocation scheme one can essentially
take two different routes. Noting that the ill-conditioned R correspond to a poor
choice of the basis-set and grid points, one can try to define a new representation
in which these have been optimized for the numerical system at hand. This lead
to the so-called discrete variable representations which will be discussed in details
soon. Alternatively one can make the collocation matrix unitary, i.e. R™* = R™,
by ensuring that the FBR functions satisfy the following discrete® orthogonality
(or completeness) relations

N

Z“;(xp)un(xq) =0p © ZU:L(xp)“m(xp) = Onm (2.10)

p=1

3This is not to be confused with the orthogonality relation (u,|u,) = dp, which we have
assumed throughout this discussion.
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An example of such a unitary collocation scheme is the celebrated Fourier method
which will be the next topic of this section.

2.2.2 The Fourier transform method

Let us next examine a special case of an orthogonal collocation scheme which
has become one of the most important numerical techniques in especially time-
dependent quantum dynamics. Consider the FBR functions

k, =n—N/2

2.11
n =1....N ( )

1
un(r) = —= expli2mk,x/L] where {

VN

which are clearly orthogonal (but not orthonormal) in the z interval from zero
to L. If we now chose a uniform grid, i.e. N equally spaced sampling points,
{zp=(p—-1)Az, p=1,...,N} where Az = L/N, we can show the complete-
ness relations

> un(wp)us(z,) = Zexp[l%k’ (p—q)/N] =

%exp[m(q —p)] Z expli2mn(p — q)/N] = 0pq (2.12)

where the last summation can be carried out explicitly because it is a finite trigono-
metric sum®*. This is exactly the first of the discrete orthogonality relations in
eq. (2.10), and the other one follow immediately from the symmetry between n
and p in eq. (2.12). Thus, this is a unitary collocation scheme, with the property
that the expansion coefficients of a finite-basis representation,

ZC’ Un () \/_ZC’ expli2nk,x, /L] (2.13)

4The case p—q = 0 is trivial, and for p # ¢ it can be shown, using finite sums of trigonometric
functions (see paragraph 1.341 eq. (1) and (3) in reference [19]), that

N
Zeﬂwnm/N z7rm(N 1)/N SIH(T[—m)
sin (7m/N)

n=1

which for m = p — ¢, where [p—q| € [1,..., N — 1], is clearly zero.
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are simply given by®

N

Co =Y U(zp)up(zy) = \F pr x,) exp[—i27k,x,/ L] (2.14)

p=1

Eq. (2.13) and (2.14) are the discretized analogous to the well-known continuous
Fourier transformation,

FT [ (k)] = — \/_ k)e'* dk = U () (2.15a)

FT [0 (z ]_m/

e " dy = W(k) (2.15b)

which change a coordinate representation to a momentum representation and vice
versa. In quantum mechanics the physical interpretation of the expansion coef-
ficients, C,,, is therefore a discrete representation of the amplitude of the wave
function in momentum space. Next we note that,

d™V(z

T \/27/ Jik)" ek dk = FT™[U(k)(ik)™] (2.16)

d’”\IJ

i.e. . 2, 1 approximated by eq. (2.13) with C,, — (i27k/L)™C,, the ex-
ceptlonal importance of this special collocation scheme finally emerge: The kinetic
energy operator is local in the momentum representation (as is the case for the
potential in the coordinate representation), and the Fourier method facilitates the
discrete transformation between the two representations. Kosloff and Kosloff[20]
and Feit et al.[21] were the first to apply this powerful technique to compute the
action of the kinetic energy part of the Hamiltonian. Since then, the Fourier
transform method has gained enormous attention and popularity in the area of
time-dependent quantum dynamics. This popularity is primarily due to the fast
nature of the algorithm used for the numerical implementation of this scheme
(hence the name fast Fourier transform or just FF'T), which makes it scale semi-
linearly, N log N, with the size of the grid, N. Thus, to sum up the FFT method
can be viewed as a special case of a unitary collocation scheme, and the equivalence

5This follow directly from eq. (2.10).
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of eq. (2.8b) and (2.9) read as

[R-T7 R+ VP - £
[L° +R*-V° R~ EI] -

(2.17a)
(2.17b)

Before we proceed further to the last grid method, it is worthwhile to add that in
the discrete representation of quantum systems, operators corresponding to phys-
ical observables are mapped onto a discrete Hilbert space. Thus, operators in the
discrete Hilbert space should satisfy all the quantum mechanical commutation re-
lations obeyed by the corresponding physical observables in the original Hilbert
space. Only then does one have a true one-to-one mapping of operators repre-
sented in respectively the discrete and the continuous Hilbert space. Kosloff and
Kosloff[20] have shown that this is indeed the case with the Fourier discretisation of
a wave function which has a finite extent in configuration as well as in momentum
space (i.e. function is band-limited). This makes the Fourier transform method
advantageous over many other methods. However, in situations where the wave
function is not periodic or band-limited, one has to employ a semi-local approxi-
mation of the kinetic energy operator, which naturally leads us the grid methods
to be discussed below.

2.2.3 The Gaussian quadrature

As a prelude for the presentation of the discrete variable representation we shall
briefly mention the Gauss quadrature theorem. For a more complete discussion on
this subject we refer to “Numerical Recipes” by Press et al.[22], and the references
mentioned therein. The central idea of Gauss quadrature is to discretize an integral
through the approximation

[ oW f@) = S W) (2.18)

where f(z) is an arbitrary function, W(z) is a known weighting function, W, are
the associated weights, and x, are the grid points of the quadrature scheme, also
referred to as the abscissas. The fundamental theorem of Gauss quadrature now
reads: Given a set of orthogonal polynomial basis-functions

/b dz Pl (x)W (2)Pm(z) = Npbpm, n,m €[0,...,N —1] (2.19)
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where n denotes the polynomial degree and W (x) is a weighting function, it then
follows that if =, and W,, entering eq. (2.18), are chosen as respectively the N
roots of Py (x) and the solution to the matrix equation®

’Po(g;l) 'Po(a:z) ... Po(.’L’N) W, NO/,PS
PN—l(xl) 'PN_l(a?Q) e PN_l(IN) WN 0

then eq. (2.19) is exact if the function f(x) can be expressed as a polynomial
of degree < 2N — 1. This Gaussian quadrature scheme has proven very useful
in many numerical applications, but in the present formulation it suffers from a
numerical inconvenience: The scheme has explicit reference to both the abscissas
and weights, cf. eq. (2.18). The accurate calculation of roots of a polynomial of
high order is not always trivial, and eq. (2.20), which generally determines the
weights, can be numerically very unstable. The question is now how we can use
the Gaussian quadrature scheme to construct a compact collocation method which
does not suffer from these problems.

2.2.4 Discrete Variable Representations

In the following we will demonstrate how the discrete variable representation can
be derived from the Gaussian quadrature scheme. This DVR method is very central
to the work presented in this thesis. In all of the calculations I used one- or two-
dimensional DVR formulations, and chapter 11 actually concerns the development
of an extension of the DVR method to complex functions, or more correctly the
“numerical complex continuation of matrix-elements expressed in a DVR”. There-
fore I have decided to be more comprehensive in the presentation of this method.
The procedure will be as following: First we show a collection of important rela-
tions which the DVR scheme satisfy, and then in the end we tie them all together
and define the overall scheme. This process might seem a bit lengthy, so I ask the
reader to be patient and “hang in there, for the reward is just around the corner”.

From the polynomials introduced above we construct the orthonormal functions”

Poi(z), n=1,...,N (2.21)

6Eq. (2.20) ensures that eq. (2.18) is exact for f(x) = Pg(x)P,(x) where Py(x) is a constant.
"Note that these functions are not generally polynomials due to the weighting function W (z).
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Using eq. (2.18) we then have the following approximation of a general matrix
element
N

(Wl flum) = [ doi@)f)un() = S

p=1

= D () f (@) um(y) (2.22)

1472

N, Pr(@p) f(xp) P ()

where we have defined the new weights Q, = W, /W (x,). Next setting f(z) =1
in eq. (2.22) and introducing the collocation matrix, R = un(z,), we obtain the

matrix relations

E-i- . QD . E — ; AN 54— — E_IQD_I (223)
From eq. (2.22) and (2.23) it now follows that
(unlflum) = [RT-Q7-17-R]  =[R"-f"-R| (2:24)

which does not depend explicitly on the weights. However, in this form we will
have to compute the inverse of the collocation matrix, and so instead we define the
unitary matrix, g}m = \/ﬁpgpn’ i.e.

U = QP2.R (2.25a)
U'Uu = 1 (2.25Db)

where eq. (2.25b) follow directly from eq. (2.23) and (2.25a). If we next insert
eq. (2.25a) into eq. (2.24) we obtain the very important relation

N
(Un| fltm) = [ng _£D g] = Zg;nf(xp)gpm (2.26)
p=1

As a very important special case of this matrix equation we note that

ll=
(o<

Ut =x" (2.27)

[1>4

where we have defined the matrix X = (u,|z|u;,). From the orthonormal basis-
set, {u,(z), m=1,...,N}, we can now define another orthonormal basis-set,
{X,(z), p=1,...,N}, by the unitary transformation

Xy(z) = g:mun (x) (2.28)

n=1
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which is easily inverted to give

up(z) =) U Xy(x) (2.29)

:pn
p=1

It then follows from eq. (2.28) and (2.26) that

(X|flX)y=[U-UT-£2-U-U"| =12 = f(2,)0p (2.30)

rq =Pq

We can now combine eq. (2.25b) and (2.28) to obtain an expression

U(x) :ZCnun(x) = Z Cp ngné\f'p(x)
:Z \/STP ZO“Epn XP(I) = Z \/KTP Zonun(xp)] Xp(x)

:Z\/ﬁqu(xp)/\fp(x) (2.31)

which has the discrete form

¥(z,) = Z \/ﬁp‘lj(xp)Xp(xp) (2.32)

p=1

Noting that the expansion coefficients, ¥(z,), in eq. (2.32) are linearly independent
we arrive at the result

Xy(zq) = Q126 (2.33)

which shows that the function, A}, (x), has the characteristic “delta-function-like”
property to be zero at every grid point different from z,. This is illustrated in
figure 2.6 for a specific choice of the FBR which we will return to shortly.
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We are now finally ready to define the overall discrete variable representation:
The first step is to choose an orthonormal basis-set, {u,(xz), n =1, N} in which
the kinetic energy operator is local or at least semi-local, i.e. the matrix repre-
sentation (u,|T|u,,) is diagonal or very sparse.® Next one constructs the sym-
metric matrix X = (u,|z[u,) and diagonalize it, and according to eq. (2.27)
the eigenvectors define the unitary transformation matrix, U, and the correspond-
ing eigenvalues are the grid points, {z,, p =1, N}, of the DVR scheme.® The
important point is now that there exist an isomorphism (due to the unitary ma-
trix, U in eq. (2.28) and (2.29)) between the finite-basis representation (FBR) of
U(z) in {u,(r), n=1,N} and a discrete variable representation (DVR) of ¥ in
{X,(x), p=1,N}. Matrix-elements over functions of the coordinate are by con-
struction diagonal in the DVR (see eq. (2.30)), and eq. (2.26) exactly show us how
to approximate the corresponding matrix representation in the FBR to Gaussian
accuracy. Thus, the equivalents of eq. (2.8b) and (2.9) read as

(2.34a)
(2.34b)

N ||<:
|<

'.'_,

A e
I

(e R [en}

<
o]
Jl=v
|
&
=

where ‘ifp = \/STpllep, which strictly speaking means that it is not a collocation

method in its original sense (C, # Ux,). The DVR basis-set, {X,(z), p=1,N},
earns its name from the fact that the expansion coefficients of a wave function
in this representation correspond to the weighted values of the function at each
discrete grid point, as shown in eq. (2.31).

At this point it is very useful to make a comparison of the DVR and the Fourier
methods. In the latter one switches back and forth between the momentum and
the coordinate representations, in which respectively the kinetic energy operator
and the potential is local, and in the DVR scheme one switches back and forth
between the FBR and DVR basis-sets in which respectively T is semi-local and
V(z) is local. In the Fourier method the grid is always uniform, whereas in the
DVR method one has the liberty to choose the FBR which in turn defines the
underlying grid.

The discrete variable representation, just presented, was originally introduced in
the area of molecular reaction dynamics by Light and coworkers[23] in the mid-

8This is the case for most of the orthogonal polynomials due to the existence of simple recur-
rence relations for the derivatives ul, ().

9We just note that X can usually be constructed from analytical expressions due to the
characteristic recurrence relations satisfied by zuy,(z).
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eighties, and has been very popular in time-dependent as well as time-independent
formulations ever since. The success of the DVR method owes to many different
factors which we will briefly try to cover now. Although the one-dimensional DVR,
described above, is very useful and relatively simple to implement, the use of direct
product DVR for multi-dimensional problems is much more advantageous. First,
the Hamiltonian matrix in the multi-dimensional DVR is easy to construct as we
shall see in both chapter 10 and 11. More importantly this matrix is often very
sparse, which leads to a much better scaling of the numerical implementation.
In one dimension there are no non-zero matrix elements in the discrete variable
representation of the full Hamiltonian (c¢f. eq. (2.34)), and since the rate limiting
step in most dynamical calculations is the action of the Hamiltonian on the wave
function, corresponding to a matrix-vector multiplication, then the DVR scales like
N? where N is the dimension of the representation. However, in multi-dimensions
H will often be very sparse, especially if the kinetic energy operator is separable in
the different coordinates, i.e.

e gfp: Ogq + lzq, Opp' + V (T, Yg) Oppr ggr (2.35)
Consequently the multi-dimensional DVR scheme scales semi-linearly in the grid-
size. In fact Colbert and Miller[24] have shown that in Cartesian coordinates,
where T can always be written as a sum of one-dimensional terms, direct-product
multi-dimensional DVR scales like the FFT method, i.e. Nlog N. Even when T
is not separable in the coordinates can the DVR be optimized such that H is very
sparse. This is done through the successive diagonalization-truncation scheme of
Bagi¢ and Light[25], which will be the topic of subsection 2.2.8. For now, we just
note that through this truncation-scheme a very compact direct-product basis-set
is constructed, i.e. N is reduced. As the last important feature of the DVR method
we emphasize that this scheme can handle singular terms in the Hamiltonian in a
very effective way (i.e. analytical) by choosing the ad hoc FBR.

2.2.5 Particle in a box DVR

As a very important special case of a DVR we now briefly present the particle-in-a-
box DVR scheme, as this will be the choice of FBR in chapter 10 and 11. We shall
adopt a slightly different notation, which will be used throughout part ITI. For a
more complete review of this special DVR we refer to the appendix in reference [24]
mentioned above.

Consider a one-dimensional quantum system, with coordinate R restricted to an
arbitrary but fixed box. First we note that any physical box can always be shifted
without loss of generality. Thus for a given box in the coordinate R - going from
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zero to R,,., - we can define a FBR basis set of orthonormal particle-in-a-box
(PIB) eigenfunctions,

2
{<R|<pn> =\ sin <27TR) =1 ,NR} (2.36)

The Npg roots of ¢n,+1(R) in the interval | 0; Ry |

AMANALAAN
SARRTATATRTATATR

Figure 2.4: Plot of the FBR function (R|ya) where R4, = 10 and Ng = 30, cf. eq. (2.36).

Rma:z:
Np+1

R, = p=ARp, p=1,2,...,Np (2.37)

are exactly the abscissas for the DVR associated with this FBR, and the corre-
sponding weights, €2, in eq. (2.22), can easily be shown to be the constant AR. A
plot of one of these simple sin-functions is shown in figure 2.4. The transformation
to the DVR, {|R,), p =1, Ng}, from the FBR, reads as

2V =Y Upnlon) (2.38)

n =1

where the unitary matrix U, is given by

. _ 2 . nr R,
U,, = Relen) = gy o0 (2 239)
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Figure 2.5: Definition of the points in the uniform particle-in-a-box grid. Note that the end-
points are not included in the definition of the points.

It is important to note that the endpoints of the box (i.e. 0 and R,,,;) are excluded
in the definition of the grid points, see figure 2.5. The reason for this is that every
member of the FBR basis set is zero at these points, resulting in zero-columns in
U . Thus the matrix expressing the basis set transformation would not be unitary
i.e. the defined DVR and FBR are not isomorphic. This defines a quadrature
scheme of Gaussian accuracy as the described above. In fact, as the expansion
functions, eq. (2.36), are periodical, and the underlying grid uniform (i.e. evenly
spaced), this actually corresponds to the trapezoidal rule. In figure 2.6 one of
the members of the DVR basis-set is plotted, note especially the “delta-function”-
like behavior as predicted above in eq. (2.33). Within the approximation of the

Figure 2.6: Plot of the DVR function (R|Ra9) with Rp,e; = 10 and Ng = 30, cf. eq. (2.36).
associated quadrature the defined DVR satisfy the following basic relation

and consequently the potential energy term in the Hamiltonian is simply diagonal
in the DVR basis set. Using the analytical expression for the FBR, (eq. (10.4)) it is
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easy to show that the matrix representation of the kinetic energy operator in the
DVR basis set reads as

h2
T=-—U-N-U (2.41)

2/1,::_

where N = = —(n7/ Rpaz) *0np and U is defined in eq. (2.39). The evaluation of
the matrix elements, T}, in eq. (2.41), thus involve a sum over products of two
sin-functions with the premultiplier n?. After some lengthy algebra (see footnote

20 in reference [24]) one can obtain the following analytical expression for the sum

_hz(—l)p_qx{F(p—q)—F(p+Q) for p # q
P 4uR2 (2(NR+1)2+1)/3—F(p+q) forp=gq

max

(2.42)

where F(n) = sin™? (W%)

2.2.6 The HEG method

As pointed out above, the sine-based DVR constitutes a convenient representation
for the expansion of a wave function, which is similar in spirit to the very general
role played by the plane wave basis-set underlying the FFT scheme. However,
for most physical systems, this primitive choice of a basis-set would constitute a
poor representation in terms of efficiency. The reason is of course that the DVR
basis-set has not been optimized for the numerical problem at hand — or to use
a DVR terminology — the grid points have not been chosen so as to reflect the
physics of the problem. In other words we would like to have a DVR grid that
reflects the topology of the potential energy surface such that the grid is dense in
regions where the de Broglie wavelength is small and more sparse elsewhere, see
figure 2.7. This problem is actually related to most of the DVR, basis-sets we can
construct from simple analytical FBR basis-sets considered so fare, unless of course
the system is extremely simple. Thus, suppose we have a general FBR basis-set
{¢n(x)} which may be very complicated but nevertheless constitutes a physically
more meaningful representation of the system. The question is now how can we
construct a DVR scheme from this FBR basis-set ?

A very simple solution to this numerical problem was proposed more than thirty
years ago by Harris, Engerholm and Gwinn|[26], and this scheme now goes under
the name “the HEG method”. They showed that by substituting u,(z) — ¢, (x)
in eq. (2.26) and (2.27), mentioned above, the desired DVR scheme emerges natu-
rally. Thus, from some arbitrary, but convenient choice of the ¢, (z)’s, the position
matrix, eq. (2.27), is constructed and subsequently diagonalized, which uniquely
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Figure 2.7: Schematic illustration of the HEG scheme, where a DVR grid is constructed which
reflects topology of the potential energy surface.

defines a new DVR basis-set according to eq. (2.28) and (2.30). It was later shown
by Dickinson and Certain[27], that this method is indeed equivalent to a quadra-
ture scheme of Gaussian accuracy. Thus, the HEG method can also be used to
define a numerical quadrature when no analytical expression is known for the FBR
functions, ¢, (z), or when it is too cumbersome to deal with0.

2.2.7 Preconditioning and truncation

The next natural question would be, how can we construct the {¢,(z)} basis-set
which constitutes a physically meaningful representation of the system. In other
words, how do we from the knowledge of the full Hamiltonian operator of the
system, H, construct a basis-set in which the matrix representation of H is sparse
or almost diagonal ?

The answer to this fundamental question is use preconditioning of a primitive
basis-set in the leading part of the full Hamiltonian. The central idea is based on
the fact that the full Hamiltonian can always the partitioned into a large zero-
order term, H0 and a smaller remainder term h such that H = H® + h. The
first step is then to setup the matrix representation of H in some primitive but
convenient FBR basis-set, e.g. the PIB basis-set defined above. This matrix, H°,
is then diagonalized and the eigenvectors exactly define the {y,(x)} basis-set in

100f course we still assume that we can construct the position matrix entering eq. (2.27), for
instance by combining a recurrence and orthogonalization relation for the FBR’s.
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Figure 2.8: Schematic illustration of the two steps in the successive adiabatic reduction scheme.

Preconditioning Truncation

which H is close to diagonal, see figure 2.8. By transforming the full Hamiltonian
into a more diagonally dominated form, the diagonalization of H, by means of
some iterative scheme, will often lead to much faster convergence. However, the
advantages of a preconditioning gets ever bigger if we subsequently truncate H, see
figure 2.8. Thus, if we are only interested in states of the full system below some
threshold energy, Fy, s, we can reduce the {¢, (z)} basis-set size by neglecting the
high-energy ¢, (z)’s with eigenvalues of HO larger than Eyp,.,. Like this, for a given
accuracy on the eigenvalues of fI, the combined preconditioning-truncation scheme
allows one to reduce the size of the overall working basis-set. The compact {¢,(z)}
basis-set can then next be used as the input for the HEG scheme mentioned above.

2.2.8 The successive adiabatic reduction method

The last DVR related numerical technique that we shall discuss in this chapter
is the very powerful successive adiabatic reduction (SAR) scheme of Bag¢i¢ and
Light[25]. This method can actually be viewed as a sort of generalization of the
preconditioning—truncation scheme, just discussed, to multi-dimensional systems.
Let us exemplify this method by considering a two-dimensional system depending
on the vibrational coordinate r and the translational coordinate R (see for instance
figure 10.1). Let us furthermore assume that r describes the fastest or most bound
motion in the system. As a prelude to the SAR method we first define some effective
translational Hamiltonian, He/f (R), say along the minimum energy-path in r. We
then use this zero-order Hamiltonian to construct a compact FBR basis-set in R,
in the way described in the previous subsection, which in turn is used as the input
for the HEG method to give the final working DVR basis-set in the translational
coordinate, {A,(R)}. The basic idea behind the SAR method is now to expand
the full two-dimensional wave function of the system, ¥(r, R), in a direct product
basis-set of the X,(R)’s and a set of adiabatic eigenstates, ®,(r; R,), with respect
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to the DVR grid points of the “slow” coordinate, 12, i.e.

U(r,R) = Cpu®u(r; Ry)Xy(R) (2.43)

where the ®,(r; R,)’s are defined as eigenfunctions of the R-fixed Hamiltonian
evaluated at the discrete {R,} grid points,

~

H(r, Ry)®n(r; Ry) = En(Ry)®n(r; Ry) (2.44)

The basis-sets of these vibrationally adiabatic so-called ray-eigenstates is next
truncated at each R, by keeping only those states for which the adiabatic en-
ergy E,(R,) is located below the threshold energy, Einqes. All in all this leads to
a very compact and convenient adiabatic direct product basis-set in the two coor-
dinates. A plot of the adiabatic energies, E,(R,), can give and crude idea of the
“non-adiabatic” coupling in the two degrees of freedom, and since these curves can
display very complicating topological behavior they are some times given the nick-
name “spaghetti-curves”. We finally note that a basis-sets of “pseudo-diabatic”
eigenstates can next be constructed from the re-labeling of the @, (r; R,)’s accord-
ing to the avoided crossing of the “spaghetti-curves”. Leforestier [28] has recently
shown that these “pseudo-diabatic” energy curves provide a very good zero-order
description of resonances. The precise definitions of an adiabatic and diabatic rep-
resentation will exactly be the topic of the next chapter, however this time with
respect to the electronic motions.
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Non-adiabatic dynamics

At the very heart of many ab initio' quantum mechanical calculations for molecular
systems lies either the Born-Oppenheimer or the adiabatic approximation. The
philosophy of these approaches is a separation (complete or partial) of the electronic
and nuclear motions, taking point of reference in the large difference in the masses
(assumption of infinite nuclear masses). Nevertheless, many chemical reactions
involve more than just one (typically the lowest) electronic potential energy surface.
Examples of such reactions are electron-transfer and photo-excitation processes
which are inherently non-adiabatic, but also more general chemical reactions where
more electronic potential energy surfaces are energetically accessible, i.e. close in
energy. Even apparent single surface problems have due to the geometric phase
effects[29-32] turned out to involve the effect of more than one electronic potential
energy surface. Solving ab initio quantum mechanical problems for many particle
systems in the framework of negligible correlation between the electrons and the
nuclei is difficult enough. However, as the experimental measurements get more
sophisticated and the available computer resources grow rapidly it is very important
to develop the capabilities of the quantum scattering methods which go beyond
these approximations to as great an extent as possible in order to be able, in some
cases at least, to provide a “completely reliable” theoretical description.

As implied above electronic non-adiabatic transitions occur due to the breakdown
of the Born-Oppenheimer approximation (to be define later). In general, one may
distinguish between two different forms of electronic non-adiabatic transitions ow-
ing to the underlying mechanisms. The first one originates from the radial motion,
which in the case of a simple atom-atom collision, arise due to the translational

Tt is a fallacy to put the term ab initio equal to exact in general. Strictly speaking ab initio
means “from the beginning”, and when used in the context of natural science, it means exact
within the framework of a given (non-empirical) model or theory.
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motion, and in the more general cases, due to vibrational and angular motions as
well. This radial non-adiabatic coupling was first treated by Zener[33], Landau[34]
and Stuckelberg[35]. In short they found that the Born-Oppenheimer approxima-
tion breaks down when two adiabatic electronic states (to be defined later) of the
same symmetry approach each other very closely in energy. The second form of
non-adiabatic coupling originates from the rotation of the body fixed axis of the
system with respect to an axis fixed in space. This rotational coupling was first
discussed by Kronig[36] who found that due to the conservation of the total angu-
lar momentum, the transformation from the space fixed to the body fixed frame of
reference, additional couplings were introduced between various electronic states.
The main difference between the two types of coupling resides in the face that
radial coupling may only cause transitions among electronic states of the same
symmetry, whereas rotational coupling can mix states of the same and different
symmetries.

The subject of the electronic non-adiabatic transitions in atom-molecule collisions
has already been reviewed by several authors (e.g. [37]), and a complete discussion
and derivation of the different non-adiabatic approaches is beyond the scope of
this thesis. However, we will present some of the central ideas and concepts, as
they will play an important role in especially the second part of this thesis. In
order to give a more precise definition of these approximations, we shall consider
an N-particle system with g nuclei and N — g electrons. As a prelude to the
separation of the nuclear and electronic motions, we introduce a partitioning of
the particles in which the labels 1 through g refer to nuclei and the remainder to
electrons. Further to simplify the notation we will denote the nuclear coordinates
(71,72, ..., Ty) collectively by 7, and the electronic coordinates (7yi1, 7gt2,...,7N)
collectively by 7.,2. To keep things as simple and at the same time general as
possible we will conduct the preceding non-adiabatic analysis in a space-fixed frame
of reference using simple Cartesian coordinates. Consequently we will not be able to
distinguish between the non-adiabatic radial and rotational coupling as mentioned
above, but except for the symmetry considerations the two types of coupling are
conceptually identical. In reference [38] a more involved derivation is shown in the
body-fixed frame of reference using mass-weighted Jacobi coordinates. However, it
is the present authors point of view that this additional complication of the system
serves no purpose in the present context of merely defining the different non-
adiabatic representations. Thus, for the general system in space-fixed coordinates

2The somewhat bizarre double-vector construction in this notation is used to remind us that
it denotes a collection of vectors.
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the total non-relativistic Hamiltonian operator, ﬁ, reads as

H(7,, 7)) = TM(F,,) + TUT,) + VI T) (3.1a)

nu

= T"(7,,)+HN:7,,) (3.1b)

nu

where the nuclear and electronic kinetic energy operators respectively read as

. w o,
j=1 7"

. Noop2

T(F) = - ) 2—mv2 (3.2b)
j=g+1 7

and the potential energy for the case of Coulomb interaction is defined as

N

0 = €;jCk
Vt t( Teps T nu) = Z % (33)

P Ameo |y — 7|
<k

The fundamental equation of motion for the complete system is given by the cele-
brated time-independent Schrodinger equation

H(_'eb_‘nu)ql(_'l’ nu) E\II( ey I nu) (34)

where the eigenvalue, F, equals the total energy of the system. From the definition
of the electronic Hamiltonian, H®, in eq. (3.1b), we have the additional eigenvalue
equation

Hel( Tepp I _‘nu)cbel(fel;znu) = S( )(I)el( ;T ) (35)

Tels Ty

which has a parametrical dependence® on the nuclear configuration, 7,,, which is
emphasized by the use of a semicolon in the argument list. This equation is often

3Parametrical dependence of an operator, in the context of quantum mechanics, means that
the operator is “local” in the parameters under considerations. Thus, mathematically we can
define the term parametrical dependence of an operator O(z;y), with respect to the variable y,
from the relation

/ " dy 6y — y0)O(a:) = O(z:yo)

where d(y — yo) is a Dirac delta function. For instance, V' (7,;, 7,,,,), defined in eq. (3.3) is local in
both 7,; and 7, whereas Tel( 7.;) is not a local operator in 7,;, due to the differential operators,
entering the eq. (3 2b), which so to speak access the whole configurations space make up by 7,;.
Consequently eq. (3.5) has a parametrical dependence on 7,,, and not 7.
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referred to as the “clamped nucleus equation” there £ is the electronic energy at the
considered nuclear configuration. Generally speaking there now exist two distinct
strategies to solve eq. (3.4), the diabatic and the adiabatic, which both lead to
so-called close coupled equations in the nuclear coordinates. Both approaches take
point of reference in a basis-set expansion of the complete solution to eq. (3.4)
in a direct product basis-set of wave functions defined from the clamped nucleus
eq. (3.5). This will be the topic of the next two sections.

3.1 The diabatic representation

One of the strategies to solve the full quantum problem of eq. (3.4) is to fiz the
nuclear coordinates 7, parametrically entering the clamped nucleus eq. (3.5), to

a specific reference configuration 7, = (7,79, .. .,79), and define a basis-set of

orthonormal electronic states, {®%(7; 7 u)} from the equation

el

H(7, (Lot ) = En(Tna) B (et ) (3.6)

Teiy T nu) Tels 'y Tels Tnu

These states are called electronically diabatic, and it is very important to note
that they do not depend explicitly on the nuclear coordinates. If we next, as a first
“ansatz”, assume this basis-set to be complete in the Hilbert space of the electronic
domain, £2(V;), which is of course not generally the case for a finite basis-set,
then the exact molecular wave function in eq. (3.4) can be expanded as follows

el’ nu Z(Dd el; nu Xd( ) (37)

where the diabatic nuclear wave functions, X4(7,,), still remains to be defined.
Eq. (3.7) is referred to as the diabatic representation of V(7 Inserting this
expansion into eq. (3.4) results in

TepyT nu)

S (BU(E,) — B+ BE ) $E B =0 (38)

n

To obtain equations of motion for the diabatic nuclear functions, X%(7,,), we now
proceed along the lines of the so-called close-coupling approach (CC), which is
based on a simple technique that we will refer to as the “projection method”,
where one projects the Schrodinger equation onto (in principle) all the diabatic
states. This is done by multiplying eq. (3.8) by all the complex conjugate states,
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®¢*(7.,; 7 ), and integrating over the electronic domain, using the orthonormality
relation

/ dT (bd *( Ters T nu)‘bd( Tei3 T _0 ): 6mn (39)
V

el

We then obtain the following set of close-coupled equations

> ([BE) = B] o+ W, (Frai o) ) X (Eo) = 0 (3.10)

n

where we have defined the so-called diabatic potential matrix

Emn(fnu’fgu) = /‘; d?" (I)d *< Teps T nu)Hel< Teps T _‘nu)q)d(_‘eb _"(r]w,) (311)
el

Eq. (3.10) and (3.11) make up the close-coupled working equations in the diabatic

representation, and we can immediately make the following characteristic observa-

tions:

e The nuclear kinetic energy operator, ’f”“(fnu), is diagonal in the diabatic
representation.

e The diagonal elements of W(7,,,; 7 ) serve as the diabatic potential energy
surfaces for the nuclear motion, and the off-diagonal elements are the diabatic
coupling terms which are directly responsible for the transitions from one
diabatic surface to another.

The diabatic approach outlined above is very convenient for practical numerical
implementations, but the non-uniqueness of the derived diabatic potentials, due to
the arbitrary reference nuclear configuration, 7‘"‘2u, entering eq. (3.11), can however
be a complicating aspect - as we shall see in the second part of this thesis. Another
problem with this approach is that one usually need many diabatic states in the
expansion, eq. (3.7), in order to obtain an acceptable representation of the full wave
functions. This is of course a direct consequence of the fact that the electronically
dlabatlc states, ®¢(7.;;7",), only contains nuclear information at the fixed point

nu. In the following section we will present another approach which tries to solve

some of these problems - but as we shall see, just to introduce others.
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3.2 The adiabatic representation

TepsT nu) n a

An alternative strategy to the solution of eq. (3.4) is to expand V(7
basis-set of so-called electronically adiabatic states

el’ nu Z(I)a el’ Znu Xa( ) (312)

where ®%(7,; 7,,,) are defined as solutions to the clamped nucleus eigenvalue equa-
tion

B (£ ) B4 (£ ) = EalE

Tets Ty el Lnu nu

) (Tei; Tova) (3.13)

nu

We note that the adiabatic states (as opposed to the diabatic) depend parametri-
cally* on the nuclear coordinates, 7. As in the previous section we have, as a first
“ansatz”, assumed the basis-set to be complete in the Hilbert space over the elec-
tronic domain, £2(V;). The expansion in eq. (3.12) is sometimes referred to as the
Born-Huang series, and the electronic eigenvalues, &,(7,,) define the usual (adia-
batic) potential energy surfaces (e.g. figure 1.1). To derive close-coupled equations
of motion for the functions X%(%,,) we proceed along the same lines as demon-
strated in the previous section, i.e. insert eq. (3.12) into eq. (3.4) and multiply it
by ®2*(7 followed by an integration over the electronic domain. The result
read as

Teis I nu)

(En(Tr) — +ZT (7'n) = (3.14)

where we have made use of the orthonormality relation

/ d?" Cba *( el’ —‘nu)q)g(zel;znu) = 6’mn (315)
Vel
and defined the nuclear kinetic matrix elements
zmn(fnu) EL dT (I)a *( TepsT nu)Tnu(F )[(I)Z( TepsT nu)X#( )] (316)
el

From these equations we can readily make the following conclusions

4See footnote 3 on page 43 for a definition of the term parametrical dependence of an operator.
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e The adiabatic representation of the potential energy surfaces, &,(7,,,), are by
construction diagonal.

e The coupling, responsible for the non-adiabatic transitions between the adi-
abatic surfaces, are due to the off-diagonal elements of the matrix represen-
tation of the nuclear kinetic energy term, eq. (3.16).

In the remaining of this section we are going to explore some of the problems
related to the use of the adiabatic representation presented above, which in turn
leads up to some very important approximations that will be the topic of the next
section.

In order to comment more precisely on the numerical aspects of the adiabatic rep-
resentation, we now move on at an analysis of the kinetic matrix elements, defined
in eq. (3.16), which enter the close-coupled adiabatic working equation listed in
eq. (3.14). The explicit form of eq. (3.16) follow immediately from eq. (3.2a)

- mn

g
—_ h2 a % [= —_ a /= —_ a(=
T (fnu) = - § : ] / dle (Dm (zel;znu)vi [q)n(fel;tnu)Xn (znu)] (317)

To simplify the notations considerably we are going to ignore the arguments,

—

(7., 7)), throughout the rest of this section, and furthermore adopt the conve-
nient bra-ket notation®. Thus, in this compact notation eq. (3.13) and (3.15)

5First we emphasize that throughout the rest of this chapter the bra-ket notation only denotes
integration over the electronic coordinates. Next we define the bra-ket notation as a short notation
for integrals of the type:

(¥|0|) = (¥|0[3)) = /oo dz (\Il*(x)a [<I>(;v)])
o . . (3.18)
:/oodx (0° (@) 2(=))" = (Ola]|®)

and we note that in the general definition operators always operate to the right, and only if the
operator happens to be Hermitian - that is if

/_ o:o da (m*@)a [@(x)]) = /_ Z da (6* [T(z)] @(x)) (3.19)

can the operator in a bra-ket notation operate both to the left or right, i.e.

(¥|0|@) = (2|0[2]) = (O[¥]|®) (3.20)
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simply takes the form
(H — £,)0° = 0 (3.21a)
(@7,|23) = dmn (3.21Db)

Now, using the rule for differentiation of a product-function twice, eq. (3.17) is
easily rewritten as

g
h2
T ==Y (Pl + (@5 IV200) + 2000 05) V) 22 (3:22)

j=1 m;
Inserting this result into eq. (3.14) finally lead to the following adiabatic close-

coupled working equations

Z Z(W nt+TY9) +2T V) = (E—E&n) X% (3.23)

where we have defined the non-adiabatic vector and scalar matrix coupling elements

77 = (@2 |98 (3.24a)
lff% = (®0|V3PL) (3.24b)
where 7 = 1,2,...,9, i.e. these elements involve the derivative with respect to

the nuclear coordinates. As we will clarify now these two types of non-adiabatic
coupling elements can cause serious numerical problems in the adiabatic represen-
tation. Let us start by examining the vector matrix elements of eq. (3.24a). As a
prelude we take the gradient of eq. (3.21a), with respect to the nuclear coordinates,
leading to

(ﬁel - 5n) V88 = (v €,] — [Hel]) ®° (3.25)
where j =1,2,...,g. Next we project this equation onto (®¢ |, giving
(@5, [HY|V;05) — £,(®5,|V;|®5) = V;[€:)(®5,|®5) — (5, [V, [H|®5)  (3.26)

Finally, making use of eq. (3.21b) and the Hermitian® property of He in the first
term of eq. (3.26), it reduces to

(“:m - gn) (@gn|6]|(1>fl> = 6j[“:n](smn - (‘I’%W][ﬁd]@fi) (3-27)

6See eq. (3.20) in footnote 5 on page 47.
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If we first consider the case where n = m we obtain the important result

V€] = (@Y, [H)|@2) (3.28)

which is a special case of the famous Hellmann-Feynman theorem

dE,(§)
d§

where | (£)) is the k’th eigenstate of H(¢), depending on the embedded parameter
&, with the eigenvalue Ei(§). As a prelude to the interpretation of eq. (3.28) we
first note that in the adiabatic picture, the &,(7,,)’s are the potential energy
surfaces on which the nuclei moves. Consequently we can think of V,[£,(7,,)] as
the “adiabatic quantum” force felt by the nuclei on surface n. Eq. (3.28) then
states that these adiabatic forces on the nuclei are given as the derivative of He
with respect to the nuclear coordinates averaged over the corresponding electronic
adiabatic wave function. The Hellmann-Feynman theorem is clearly an important
relation, which we shall actually use in section 9.4, but we have still not gained
any information on the elements of eq. (3.24a), as promised.

OH(¢)
o¢

= (Wx(£) Wk (£)) (3-29)

To do this, we next consider the case where n # m in eq. (3.27), that is
(Em — En) (D7, V5] @7) = —(7, |V,;[HT]|@7) (3.30)

If we next make use of the explicit definition of ﬁel, see eq. (3.1b), we finally obtain
the important result

(@2 |V;[02) = (&, — Em) THOL | V;[VI!|BL),  n#m (3.31)

This relation reveals the major drawback of the adiabatic representation, namely,
that the coupling terms of the type (@Mﬁﬂ@%) can display very large numeri-
cal values in regions where the difference between two adiabatic potential energy
surfaces is small. Even worse, these matrix elements may diverge or become discon-
tinuous in polyatomic systems (i.e. N,,, < 3) where actual crossing of the adiabatic
potential energy surfaces is more likely to occur.

Also the other type of coupling elements, (@MV?@%), can cause numerical prob-
lems. To see why, we first take the gradient of the orthonormality relation of
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eq. (3.21b), with respect to the nuclear coordinates. This gives
(V;[@5]]25) + (@7, V;(@5]) = (05 V[@7])" + (25| V;[®5])
“0 et -

(3.32)

which means that the elements of eq. (3.24a) are skew Hermitian. To obtain a
relation for 7:'522, we take the gradient of eq. (3.32) once more, leading to

(VI@mI®5) +2(V; (@3] Vi[@5]) + (@5, V3[@5]) =

N - - : (3.33)
TO" +2(V;(@5,]|V,(@5)) + Z9) =0

This expression clearly shows that the matrix elements, 7:'577131, are not generally
Hermitian or even skew Hermitian. The term “generally” is used because only in
a complete adiabatic basis-set, where we can write the resolution of unity as

1= (@) (@) (3.34)

do we have
TG = (®5,[V;- Vy[@0) =Y (B0, [V PF) - (B3] ®5)
(3.35)

which is clearly, from eq. (3.32), Hermitian. Thus, the coupling elements of the
type, (®%|V3|®2), can lead to non-Hermitian matrix expressions, which in turn
implies that the S-matrix, defined in section 1.2, is not guaranteed to be unitary.
Hence, formally speaking, it is only in the limit of a complete adiabatic basis-
set that the number of particles (i.e. flux) is conserved. This, and especially the
divergent property of the (®%|V;|®®) elements (cf. eq. (3.31)), are numerically
complicating aspects of the adiabatic representation, which often makes the dia-
batic representation, discussed in the previous section, more popular in terms of
actual dynamical calculations. Another route is to introduce approximations to
the adiabatic representation, which is the topic of the next section.

3.3 Approximate representations

One obvious way to overcome the problems of divergent and non-Hermitian matrix
elements, encountered in the adiabatic representation, is simply to neglect off-
diagonal elements of the type (®5,[V;|®%) and (®g, |V3|®2), corresponding to using
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only a single term in the Born-Huang series of eq. (3.12). Eq. (3.23) then reduces
to

R’ N
2 om (V%l%”lmm'vj) +&n—E|X5=0  (3.36)
j=1 “

This approach is referred to as the adiabatic approzimation, as opposed to the “ex-
act” non-adiabatic” solution of eq. (3.23). Surely the original motivation for Born
and Huang to introduce this approximation was not merely to overcome the nu-
merical problems encountered in the adiabatic representation, but rather to bring
eq. (3.23) into a form which could more easily be solved. If we further take the

adiabatic states, ®  to be real, the term ZSL; vanish due to eq. (3.32). In other
words, the adiabatic approximation neglects the terms (®2 |V;|®2), but includes
the term (@2 |V3|®% ). However, in the limit of a complete basis, these terms are re-
lated through eq. (3.35), and as such it seems unjustifiable to keep (®%|V3|®% ) but
neglect (® |V;|®?). This curiosity of the adiabatic approximation has led theo-
reticians® to the opinion that for some systems the result of neglecting (®y, | V3| @7 )
as well as (®7,|V;|®%) is actually more “justifiable”. This is exactly the celebrated

Born-Oppenheimer approzimation. Thus, in this approximation eq. (3.36) simpli-
fies to

2mj

9 h2
=) —VI+&n—E| X5 =0 (3.37)

J=1

It is widely believed that the complete decoupling of electronic and nuclear mo-
tions, as expressed in eq. (3.37), can be justified by referring to the work presented
in a paper[39] by Born and Oppenheimer published in 1927. Nowadays, however, it
is more usual to attempt a justification in terms of an approach that was presented
first by Born in 1951 and written up in a generally available form by Born and
Huang[40] in 1955. Thus, it should be stressed that the Born-Oppenheimer ap-
proximation, popularly known as the assumption of infinite nuclear masses, cannot,
be justified in any simple way in a completely non-classical theory.

"The term non-adiabatic is clearly a double negative construction, but it is not equivalent to
diabatic.
8My former supervisor, Professor Jan Linderberg, was of this opinion.
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3.4 The adiabatic-diabatic transformation

It should be clear from the presentations in the previous sections that both the
adiabatic and the diabatic representations have their pros and cons. Thus, it seems
desirable to establish a transformation between these two representations and use
each one for convenience as required. Such a adiabatic-diabatic transformation
has been formulated by Baer[37], which we shall very briefly outline in this sec-
tion. This is done both for the sake of completion, but especially because we will
need this transformation in a discussion in chapter 7. We will simply present this
transformation scheme as a recipe, and refer to reference [37] or [41] for the details
of the derivation.

For the sake of simplicity we consider a two-dimensional system with the mass-
weighted Jacobi coordinates r and R, see subsection 2.1.1. For this simple system
the adiabatic and diabatic representations of eq. (3.10) and (3.23) respectively read
as

2
(_%vz W E) Xi=0  (3.3%)

h2 2 7 = a __
(—ﬂ(v +27:'-V+7:')+¥—E>§ —0 (3.38b)

where we have adopted a vector/matrix notation and defined the non-adiabatic

coupling matrices of eq. (3.24) where V = [0/0r, 0/OR)]. Note also that in eq. (3.38a)
W is the diabatic potential coupling matrix, and in eq. (3.38b) V is a diagonal ma-
trix with the adiabatic potentials, £,, as the elements. Based on simple algebraic
arguments and the assumption of a complete adiabatic basis-set (cf. eq. (3.34)),
Baer shows that a uniform transformation between the two representations exist,

i.e.

(3.39a)
(3.39b)

1= %

I= I
Il

> |
+

||

where the unitary transformations matrix, A, is a solution to the differential equa-
tions

[~
[
I
ol

4= (3.40)
OAJOR+T, - A
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The solution of eq. (3.40) can easily be expressed in the following integral equations

A(r, R) = A(ro, Ro) + /TO T (r,R)- A(r, R)dr

Ry (3.41)
+ [ Typ(ro, R) - Alro, R)dR
R
or
Ry

A(r, R) = A(ro, Ro) + [ T.(r, R) - A(r, R)dR
o (3.42)

+ 7:.r(7na RO) . é(’l”, Ro)d?"

r

Note especially that if we the define A(rg, Ry) as the unit matrix, the nuclear
configuration point, (rg, Ro), plays the role of the reference point in the diabatic
representation, i.e. f?m in eq. (3.11). We now outline the transformation scheme
between the two representations.

e From a knowledge of the diabatic representation, cf. eq. (3.38a), the adia-
batic potentials, V, and the transformations matrix, A, are determined from

eq. (3.39Db). Z is next given as the corresponding solution of eq. (3.40), and
finally 7 can be constructed from eq. (3.35),i.e. T = [Z]T . Z

e From a knowledge of the adiabatic representation, cf. eq. (3.38b), the trans-
formation matrix, A, is constructed from eq. (3.41) or (3.42). In this equation
A(rg,Ry) =11is chosen as the desired nuclear reference configuration for the

corresponding diabatic representation. The diabatic potential energy surfaces

are next given by eq. (3.39Db).

We furthermore note that by combining the two schemes, outlined above, one can
also shift from one diabatic representation to another, simply by choosing a new
reference point, (rg, Ry), in the integration of eq. (3.41) or (3.42). This important
feature of the transformation scheme will be mentioned in section 7.1 in the next
part of this thesis.

3.4.1 The simple 2-surface case

To illustrate the usefulness of the outlined transformation scheme we close this
section with a short study of a simple two-dimensional two-surface system. This
is a very typical size of a practical non-adiabatic calculation, and in the context of
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the present thesis it is of particular interest as this is exactly the size of the system
that we shall study in the next part.

Since A is orthogonal it can be written as

[

_ |cosy —sinvy (3.43)
siny  cosvy ’

where the parameter v is a function of both r and R. For this two-surface case,
T =[T .T,], takes the simple form

T, = [_07; 70;] (3.44)

where = r, R, and eq. (3.40) simplifies to

oy
e Tz (3.45)
r R
v(r, R) = 7y(ro, Ro) —|—/ T.(r,R)dr + | Tr(ro, R)dR (3.46)
ro Ro

where 7(rg, Ry) = 0 defines the reference configuration in the diabatic represen-
tation. Next, from eq. (3.44) it is readily seen that eq. (3.39b) takes the simple
form

Wi = Vicos®y + Vasin®y (3.47a)
Wi = Visin?«y + Vacos?y (3.47b)
W12 = ng = % (va - ‘/1) sin 2"}/ (347(})

Thus, in the simple two-surface two-dimensional case the adiabatic-diabatic trans-
formation scheme, outlined above, is easy to apply.



Time-dependent
quantum dynamics

The time-dependent formulation of quantum dynamics has over the past decade
developed into an extremely important theoretical tool for the description of dy-
namical processes in the field of chemical physics. In many aspects it is superior
and more appealing than the time-independent approach which it superseded. The
first important point actually concerns something as “unphysical” as the human
intuition. The time-dependent picture of a physical event is much more intuitive
than the formally equivalent time-independent, for as put by Kosloff[42] “a cause
in the past leading to a result in future is strongly imprinted in human thought”.
This view-point is always taken in the classical mechanical descriptions, and this
analogy has actually been the indirect motivation for the many successful attempts
to combined the classical and quantum description in one formulation, which in
turn has lead to the semi-classical methods[43]. Thus, an important feature of
the time-dependent formulation of quantum dynamics is that one obtains a physi-
cal picture of the underlying dynamics, analogous to the classical description, but
within the correct quantal framework. For instance, in part II we will show snap-
shots of the wave packet by plotting probability densities at various stages of the
time evolution, and thereby obtain a feel of the dynamical event.

Furthermore, the underlying numerical formulation of the time-dependent wave
packet approach is an attractive alternative to that of the time-independent close-
coupling method discussed in the previous chapter. Although both formulations
are formally equivalent, they are technically and numerically very different, and
the former is computationally advantageous for large-scale scattering calculations.
In the time-independent formulation the total scattering energy is fixed to a single



56

Time-dependent quantum dynamics

value, and the wave function is subject to boundary-value-conditions to enforce the
correct asymptotic behavior. In contrast, the wave packet in the time-dependent
approach is initiated according to a relevant set of initial conditions, and repre-
sent a whole spectrum of energies. After a certain time evolution of the system,
information is then extracted from this wave packet by projecting it onto individ-
ual rot-vibrational product states, or by computing the quantum flux, defined in
section 1.1, across a dividing line or surface in the relevant product channels. Thus,
in terms of the celebrated S-matrix, introduced in section 1.2, the time-dependent
approach solves for different energies a single column of the S-matrix at a time,
while the time-independent close-coupled approach solves for the whole S-matrix
at a fixed energy in a single calculation. This is one of the reasons why the com-
putational time of each time-dependent calculation scales better than N? versus
the N3 scaling of a typical time-independent close-coupled calculation, whereN is
the total size of the involved basis-sets or grid-points.

Another factor which makes the time-dependent approach so fast and popular is
that the explicit propagation in time, of the wave packet, can be accomplished
by a variety of very effective numerical schemes developed over the last several
years. These propagation methods will be the main topic of this chapter. With
the exception of the SOD method, which is included for the sake of complete-
ness, we shall use or refer to all of these methods in the discussions to come in
part IT and III — some of the discussions will even put the techniques in a con-
text different from the one they will be presented in below. However, nothing is
perfect, and the time-dependent approach of course has its limitations where the
time-independent description is still superior. The study of molecular resonances
in chemical reactions, which will be the topic of part III, are an example of such a
case.

4.1 Time propagation

The natural starting point of a discussion on time-dependent propagation methods,
is of course the time-dependent Schrodinger equation,

L0 o

zha‘ll(x,t) = HU(z,t) (4.1)
where H is the usual Hamiltonian operator, which, depending on the system it
describes, can be either explicitly time-dependent or time-independent, and where
U (7, t) is the corresponding time-dependent wave function, which for reasons that
will soon become clear, is often called the wave packet of the system. Recalling
the usual time-independent Schrodinger equation, we note that the Hamiltonian
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operator has two different interpretations in quantum mechanics; it describes both
the energy and the time-evolution of the system. Throughout this thesis we will
assume that H is time-independent, which is the case for the closed systems that
we shall consider later on. Thus, the formal solution to the first-order differential
equation in eq. (4.1) read as

U(z,t) = U(t, t0)V(z, o) = e B0/ (5 1)) (4.2)

where we have defined the unitary time-evolution operator ﬂ'(t, to)!. The central
task of this section is to present some of the most important techniques available
for the solution of either eq. (4.1) or eq. (4.2). This solution is best accomplished
by first representing the wave function on a discrete grid, using one of the grid
methods (FD,DVR FFT) already discussed in section 2.2, and below we will focus
on the explicit propagation schemes.

4.1.1 The second-order difference scheme

Perhaps the simplest scheme emerges by approximating the time-derivative of the
wave function, entering eq. (4.1), by second-order finite differencing,

0 U(z,t+ At) — V(x,t — At)

Ew(x t) = 2AL

+0(AF) (4.3)

Using eq. (4.1), this equation is readily recast into the following iterative expression
for a time-increment of the wave function

QAL ~
U(z, b+ At) = U(z, t — Ab) + Z_—;pr(x, H+0A8)  (4.4)

Thus, the wave function obtained by this iterative scheme is correct to the sec-
ond order in the time-increment, and hence this method is called the second-order
difference (SOD) method. This method is clearly extremely easy to implement,

1Sometimes it is useful to employ a different viewpoint than the one taken in the Schrédinger
representation discussed here. In the interaction representation the Hamiltonian is partitioned as
H = H + V and the analog of eq. (4.2) reads as ¥y (z,t) = Vl(t to) ¥y (z,t0), where V1(t to) =
B’ (t—t0) /37 o —iH(t—t0) /1 i5 called the generalized interaction operator. This solution is related
to the solution in the Schrddinger representation of eq. (4.2) by the unitary transformation
U (z,t) = eiH" (t=to)/ " (2,t). Thus, the Schrédinger representation can be regarded as a special
case of the general interaction representation with HO = 0, and we just note that the Heisenberg
representation emerges when V = 0.



58

Time-dependent quantum dynamics

but it suffers from a serious numerical limitation which makes this approach ineffi-
cient for especially large-scale calculations. The SOD method requires very small
step size, At, otherwise the scheme becomes unstable and the solution blows up
exponentially. This is a direct consequence of that fact that the corresponding
approximated time-evolution operator, U(t+ At,t) — U™t (¢,t — At) ~ zi—AﬁtH, is not
unitary (i.e. norm-conserving) as required by eq. (4.2).

4.1.2 The split-operator method

One way to overcome the numerical problems associated with the SOD method, is
to define an approximate evolution operator, U(¢ + At, t), which by construction
is unitary. The simplest of these methods split the Hamiltonian as

U(z,t + At) = e HHAMM (g 4)
_ e—if’At/%e—iAtV/he—ifAt/2h‘IJ(x’t) + O(At3) (4.5a)
_ e—iVAt/2h6—ifAt/he—iVAt/m‘z\II(x’t) —|—O(At3) (4.5b)

The original formulation of this split-operator method (SO), due to Fleck et al.[44],

focused on eq. (4.5a) which is referred to as the potential referenced SO, but in
this thesis we will make use of the formally identical kinetic referenced SO of
eq. (4.5b). The split-operator method has become one of the most popular prop-
agation schemes in medium-sized time-dependent dynamical calculations. This
popularity is mainly due to the fact that it enables the actions of the two terms
entering the Hamiltonian, H = T+ V| to be evaluated in their respective local rep-
resentations. This is done by discretizing the wave function on a grid and employing
the Fourier transform method of Kosloff and Kosloff[20] for the calculation of the
action of the kinetic terms, as discussed in subsection 2.2.2. In subsection 6.2.2 we
will outline the explicit procedures involved in a single split-operator propagation
for a non-adiabatic system.

Clearly the split-operator method of eq. (4.5) is (like the SOD) only accurate up to
second order in At, which generally mean that small propagation steps has to be
employed. However, recently Bandrauk and Shen[45] have extended this second-
order split-operator to make it accurate up to third order in At (i.e. O(At*)), which
in turn implies that one can choose larger values of At. Thus, this method is actu-
ally more computationally effective than the simple second-order SO, even though
the action of seven exponential operators has to be computed, using for instance the
FFT algorithm. In addition, the phase of the corresponding wave packet is more
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accurately determined in this approach[45]. However, in the present application of
the SO method (see chapter 6 and 7) we are going to calculate the time—energy
transform of the wave packet in the discrete time steps ((cf. eq. (6.47)), which puts
an upper limit to At. Consequently we will just employ the simple second-order
SO.

4.1.3 The Chebychev polynomial expansion method

Another widely used propagation scheme consist of expanding the evolution opera-
tor, U(t, o), in a basis-set of Chebychev polynomials. This method, introduced by
Tal-Ezer and Kosloft[46], is also distinguished by its generality in the sense that it
is easily adapted to other types of operators depending on the Hamiltonian. (For a
more thorough presentation we refer to a review paper by Kosloff[47]). The natural
starting point for the presentation is first to outline the way in which Chebychev
polynomials are used to expand a simple real function.

Let us consider the expansion of a real function, f(z), in a basis-set of Chebychev
polynomials, {7, (z)}, defined as

T,(z) = cos(n arccos(z)), n=0,1,2,... (4.6)

where z is a real variable confined to the interval [—1,1]. These Chebychev poly-
nomials are orthogonal over the weight function (1 + x2)_1/ ?6],

YT (2) T (2) _ 7r
/_1 P = b g (14 8,0) (@7)

and further satisfy the following characteristic recurrence relation

T, 11(2) = 20Ty (2) — Ty (2) (4.8)

with the initial conditions Ty(z) = 1 and Ti(z) = z. Consequently, a function
f(z), defined in the interval [—1,1], can be approximated by a finite expansion in
Chebychev polynomials in the following way

flz) ~ ZAnTn(x) where A, = /_1 % dx (4.9)

Now let us return to the problem of expanding a Hermitian operator in a series
of Chebychev polynomials. Since the Chebychev polynomials are bound in the
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interval [—1, 1] the first step is to define a renormalized operator by simply shifting
its eigenvalue spectra to this range. Let assume that the upper and lower bounds of
the spectrum of H are given by respectively E,,q, ~ 222—”};4—1/%:5 and Eoin = Vinin.
Thus, we define the renormalized operator, «, in the following way

«

E) - ﬁ AE = Ema:c - Emm
(E) where { (4.10)

AE/2 (E) = (Emaz + Emin) /2

such that H = (E) — aAE/2. We can now approximate the evolution operator as

o tHt/h  _  —iE)t/h iaAEt/(2h) (4.11a)
N

= Ul )Y Au(t)To() (4.11b)
n=0

where the time-dependent expansion coefficients in the Chebychev expansion of
eq. (4.11b) are obtained as

A(t) = 2;‘5"0 /_ 1 U%O‘) do (4.12a)

L giatAE/(20) T (a)

2 — 00 _;
0 —i(B)t/h

= d 4.12b
- B T o (4.12Db)

_ 2 — (Snoe_i<E>t/h /7r 6z'cos (O)tAE/(2h) coS (ne) do (4‘120)
m 0

= (2 = b,0)e "BV (AFEL/(2R)) (4.12d)

The integral in eq. (4.12b) is realized after the substituting o = cos (6), i.e. T, () =
cos (nf), and eq. (4.12d) follow from the relation[6]

/ e 0) cos (nf) 0 = 1" j, (2) (4.13)
0

where j,(z) are Bessel functions of the first kind (see figure 1.2). The action of the
approximated evolution operator on the wave function W is then computed using
eq. (4.11b) and (4.12d) and the characteristic recurrence relation (see eq. (4.8))

(E) - H

Wy =200 =

U, -0, (4.14)

where ¥,, = T, (a)V.
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4.1.4 The Lanczos recursion scheme

The last propagation scheme to be discussed in this section is the Lanczos re-
cursion scheme[48]. The central idea of the Lanczos algorithm is to construct a

~

compact tridiagonal matrix representation, H, of an Hamiltonian operator, H, by
means of the following recursive definition of an orthonormal basis-set, {¥,, n =
0,1,...,M -1},

I,‘\I‘I’o = oV + Vs
HY, =3,¥,_1 +a,¥, + /Bn—l—lq]n where (07 = <\Ifn|H|\Iln> (415)
Boyr = (Vnp[H|Y,)

such that the tridiagonal matrix representation of H read as

—Oé() ﬂ() 0 . 0 i
Go a1 [ 0 ... 0
0 O as [o 0 e 0
He= | oo (4.16)
0 .. 0 By-—a ay—3 Bu-3z 0
0 ..... 0 Brv—-3 on—2 PBr—2
| 0 ... ... ... 0 ﬁM—2 Apr—1 |

where M are the number of Lanczos recursions. Note that in eq. (4.15) the initial
(Krylov) vector of the recursion, ¥y, must be specified. The tridiagonal matrix,
H, can next easily be diagonalized, leading to the (M x M) eigenvector matrix U
and the M eigenvalues A,. If we now assume that the system is discretized on a
grid of length N, and define the (N x M) matrix C = [¥,,¥,,...,¥,, ,], the time
propagation of the discretized wave function ¥ is given by (see eq. (4.2))

Y(t+ At)=C-U-exp [—%éAt} -UT-CT-9(1) (4.17)

The Lanczos scheme is particularly appealing for large systems, as it never requires
the explicit knowledge of the large (N x N) matrix representation of the Hamil-
tonian directly on the grid. It should be clear from eq. (4.15) that the scheme only
needs the action of H on the ¥, states, which is much less demanding in terms
of computational efforts. Also, the tridiagonal form of the Hamiltonian matrix,
eq. (4.16), is computationally very effective because only two vectors, (a, ), of
dimension M, and three recursion vectors, (¥, ,, ¥ ¥ ) of dimension N, have

to be stored in the core memory of the computer.
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However, the Lanczos algorithm is not only very useful as a time propagation
scheme as shown in eq. (4.17). It is also a very powerful technique to locate
eigenvalues and vectors of a large matrix in a narrow window of the spectrum, and
it is in fact in this context that we shall refer to the scheme later on. The rate of
convergence of a given eigenvalue, A,,, is given by the relation

An - An—l

o 4.18
Ama:t - Amm ( )

Hence, the Lanczos algorithm unveil the eigenstates in the sparse part of the spec-
trum first (i.e. at the edges). Also, it can be shown that these eigenvectors display
the largest projections onto the initial vector ¥,. Thus, by carefully choosing this
initial recursion vector one can selectively tune the Lanczos algorithm to a dynami-
cally relevant part (Krylov subspace) of the whole Hilbert space. As a consequence
the order M of the matrix H can be chosen in general much smaller than the actual
size N of the grid, i.e. M << N.
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Introduction

The treatment of quantum molecular dynamics is a formidable numerical task
when several degrees of freedom and electronic potential energy surfaces have to
be considered. The underlying problem is that the numerical effort of most ex-
act calculations, employing grid methods and propagation techniques discussed in
part I, scale exponentially with the number of degrees of freedom and surfaces,
simply because the basis-set size grows exponentially. Clearly, the higher the di-
mensionality the more important it becomes to search for optimal basis-sets which
with a minimum of functions can represent the total wave function of the system.
In the framework of the exact methods this has led to many different strategies,
some of which were also discussed in the first part of this thesis (c¢f. chapter 2).
However, even with such optimizing schemes, at present time the exact meth-
ods are restricted to 3-4 atomic systems and single surface problems. Thus, the
need for approximate but still accurate quantum methods exists, and with the re-
cent emerge of detailed experimental studies of large systems (see introduction of
chapter 1) this need has gradually increased. One could certainly argue that the
desire for such approximate methods has always been present, but it is only with
the recent access to powerful computers that very accurate (i.e. formally exact)
methods has been developed and implemented.

The problem of the unfortunate scaling of the exact multi-dimensional meth-
ods is of course related to the fact that one has to compute multi-dimensional
matrix-elements of the corresponding representation of the Hamiltonian operator
for the system. Thus, if we could somehow avoid having to compute these multi-
dimensional matrix-elements, while at the same time retaining the full dimension-
ality of the system, we would clearly reduce the computational costs. This problem
is also encountered in multi-dimensional electronic structure theory, where an ap-
proximate solution was first put forward by Hartree and Fock as early as in the
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late twenties. The central idea was to recast the exact multi-dimensional problem
into multiple approximate one-dimensional problems, which in turn are coupled in
a self-consistent way. Methods based on this idea are referred to as self-consistent
field (SCF) methods since the secular equation in each dimension is solved self-
consistently by describing the coupling to the other degrees of freedom through an
average field. Hence, to avoid having to compute multi-dimensional integrals for
the average field, it is very essential to the SCF approach that the field operator,
describing the correlations, is separable in the different degrees of freedom. (We
shall elaborate more on this limitation later on).

Common to all the exact quantum approaches mentioned so far in this thesis, is also
that the basis-sets (or underlying grids) are static, i.e. time-independent. However,
in the time-dependent formulation of quantum dynamics, which as discussed in
chapter 4 is superior in many ways to the time-independent counterpart, it seems
quite natural to introduce a time-dependent basis-set. A fixed static basis-set
must cover all the phase space which is accessible by the wave packet during the
propagation, whereas the time-dependent basis-set has merely to cover the volume
in phase space on which the wave function actually resides at any given time.
Hence, if the wave packed remains in some sense localized during the reaction, one
would expect the use of a time-dependent basis-set, which so to speak follow the
dynamics of the system as time evolves, to be very advantageous.

The combination to these two ideas led to the time-dependent self-consistent field
(TDSCF) or time-dependent-Hartree! (TDH) approximations, which was first ap-
plied to molecular dynamics in the early eighties[49]. In the scientific literature the
terminology TDH and TDSCF is often used interchangeably. However, through-
out this thesis we shall only use TDSCF for these approximations, and reserve
“Hartree” for the exact method to be discussed in chapter 6 and 7. The original
formulation of the TDSCF approximation only included a single configuration in
the representation of the wave packet (see eq. (5.2) in the next section), and to avoid
confusion with the other TDSCF approximation to be discussed in this chapter, we
shall use the term single-configuration TDSCF or just SCTDSCF. As will be clari-
fied in the next section, the formulation of dynamical problems in the framework of
this SCTDSCF approximation suffered from serious limitations or inaccuracies due
to a poor description of the correlation between the different degrees of freedom.
Observing that the simple SCTDSCF approach was limited to systems with small
correlation Kosloff, Ratner and coworkers [50] proposed a multi-dimensional exten-
sion (MCTDSCF), again strongly influenced by the analogous (MCSCF) approach
in electronic structure calculations. This approximation has proven useful in many

!The term time-dependent-Hartree is used rather than time-dependent-Hartree-Fock (known
from electronic structure theory), because generally there is no Pauli principle problems involved.
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two-dimensional systems, however for three or higher-dimensional problems the
exact solution is, in general, not included as the limiting case in the ansatz of
the multi-configurational representation of the wave function. Using a variational
principle, Meyer et al.[51] recently presented a special case of a MCTDSCF ap-
proximation, which by construction (as will be demonstrated soon), exactly has
this desired limiting property. To avoid confusion with the original MCTDSCF ap-
proximation this scheme is called the multi-configuration time-dependent Hartree
(MCTDH) method. The original formulation of this method is restricted to sin-
gle surface systems, and the topic of this part of the thesis is the generalization
and subsequent evaluation of the MCTDH method to non-adiabatic systems. In
the course of deriving the extended MCTDH working equations a new compact
notation is also introduced.

The outline of this second part of the thesis is as follows. In the next section we shall
briefly discuss the single-configuration TDSCF approximation and its limitations.
This is partly done to familiarize the reader with some of the notations and concepts
used in the subsequent chapters. Section 5.2 presents a new multi-surface MCTDH
scheme employing a non-orthogonal Gaussian basis-set. As will be clarified this
scheme turns out to be numerically unstable, and thus this section primely serves as
a prelude to the derivations of the generalized MCTDH scheme in chapter 6. In this
chapter we also give a simple one-dimensional application, but the real evaluation
of the derived MCTDH scheme follows in chapter 7 where it is applied to the
two-dimensional two-surface system of Hy on a copper surface. Finally chapter 8
concludes and briefly outlines the scheme for a three-dimensional application on
O3 where focus is especially given to a new compact basis-set.

5.1 Single-configuration TDSCF

In this section we shortly review the SCTDSCF approximation, first introduced in
quantum dynamics by Gerber et al.[49] in 1982, and subsequently comment on its
strong limitations. Thus, consider a general quantum system with the Hamiltonian

N
H(z,22,...,28) = Zhn(ﬂ%) + W(z1,22,...,2N) (5.1)

k=1

where N denotes the total number of degrees of freedom. The central ansatz of the
SCTDSCF approach is now to write the total wave function, ¥(zq,zs,...,zx), as
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the single-configuration direct product trial function

U(zy,Z9,...,2N,t) = ¢1(21,t)Pa(x2,t) - - - dn (TN, 1) (5.2)

where the single particle functions, {¢.(z,t), kK = 1, N} are assumed to be nor-
malized at all times ¢, i.e. (¢ (t)|¢x(t)) = 1. To simplify the notation we introduce
the multi-index T = (21,2, ... ,2y) and the short hand bra-ket notation

) =] o) (5.3)

We also define the single-hole functions Wy(z1, ..., Tx—1, Txt1,---,TN)

@) =[] éw) (5.4)
o

such that |U) = |¢.)|¥,). Now, inserting the trial function, eq. (5.2), into the
time-dependent Schrodinger equation,

L0 I
zhaql(a:,t) =H(Z)¥(z,t) (5.5)

and using dots as a short hand notation for time derivatives, we obtain

[T, + ) he|T,) + WD)
K'#K

ih| )| W) + i) [ Ty) = |61 (5.6)

Next we multiply eq. (5.6) by the single-hole functions defined in eq. (5.4), and
integrate over all the coordinates except z,, i.e. we multiply eq. (5.6) by (¥,|. This
gives the following N one-dimensional equations

ih| i) = [ﬁi” — in(TT) + ) <¢nf|ﬁnf|¢m>] |62 (5.7)
K'#K

where we have defined the SCF-Hamiltonian

H5F () = hy () + W (x,) (5.8)
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with the average potential or field
W (@) = (T W) (5.9)
From eq. (5.7) it should be evident that the new single-particle functions?

9 = ¢n) exp [ JK (@m P> <¢n/|ﬁnf\¢m>)] (5.10)

K'#K

satisfy the one-dimensional time-dependent Schrodinger equation

ih% ®,) = H3OT |®y,) (5.11)

Assuming that W (T), entering eq. (5.11) through eq. (5.9) and eq. (5.8), is sepa-
rable in the different degrees of freedom?, it should be clear from the derivations
above, that in this approximate SCTDSCF scheme the size of the computational
problem increases linearly rather than exponentially with the size of the system.
However, the fact that W (Z) is not usually separable gives rise to serious limita-
tions to the approximations represented by eq. (5.11), which in turn makes the
SCTDSCEF fail in several important situations. Few problems are truly separa-
ble, and although some indirect correlations are taken into account, the enforced
factorization of the wave function in eq. (5.2) ignores the direct spatial correla-
tions between the single-particle functions. Thus, loosely speaking, this simple
SCTDSCF approach neglect, or strongly approximates, the correlations between
the one-dimensional subsystems under discussion, and consequently fail when these
correlations become important. Hence, the SCTDSCF approximation may signifi-
cantly distort the dynamics in some systems.

To exemplify this breakdown of the SCTDSCF approximation let us consider a typ-
ical case where the one-dimensional adiabatic tunneling of a subsystem (denoted
1) occurs in the presence of a heat bath (i.e. thermal environment) represented by
the subsystem denoted 2, see figure 5.1. For this system ¢;(z1,t) (see eq. (5.2)) has
two pronounced peaks centered around the two minima of the left potential energy
curve in figure 5.1. However, according to eq. (5.11) the subsystem 2 responds to
the average position of subsystem 1. Hence, if the state of subsystem 2 is highly

2The phase factor in eq. (5.10) is of no importance, and is usually dropped[49)].
3In section 7.2 we will demonstrate how a general multi-dimensional potential energy function
can be approximated as a sum of direct-product functions in the different degrees of freedom.
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Figure 5.1: Tllustration of a typical system for which the SCTDSCF approximation will often
give very poor results. The adiabatic potential curves show an example where the tunneling of
a system (1) occurs in the presence of a heat bath subsystem (2), represented by a localized
oscillator. These potential energy functions enter respectively fll(;vl) and hy (x2) in eq. (5.1).

sensitive to the position of subsystem 1, and the time scale associated with the
tunneling motion of the latter is slow relative to that of the former, a description
based on eq. (5.11) is not valid and will usually fail badly. Thus, the simple SCTD-
SCF approximation broadly speaking fails because the wave function of the system
bifurcates or becomes delocalized, which is not at all unusual in reaction dynam-
ics. For the example just discussed it therefore seems natural instead to represent
the subsystem 1 by at least two functions centered around the two minima of the
potential curve*. Also subsystem 2 can with advantage be represented by more
functions, such that the left hand side of eq. (5.2) becomes a sum over several
direct products of single-particle functions, or configurations, instead of just one.
This generally lead to the multi-configuration TDSCF (MCTDSCF) approxima-
tions, first introduced to the field of quantum dynamics by Kosloff, Ratner, Miller
and many other coworkers around 1987[50,52]. However, the problem with this
approach is that it does not in general have the exact solution as the limiting case
as more and more configurations are included in the calculations. By employing a
variational principle it is however possible to derive a special type of MCTDSCF
scheme which by construction exactly has this desired limiting property. This so-
called multi-configuration time-dependent Hartree (MCTDH) method will be the
topic of the remaining of this part of the thesis.

4The left potential energy curve in figure 5.1 may be the lower adiabatic branch obtained by
diagonalizing the corresponding two diabatic surfaces. Thus, in this case the two single-particle
functions, used to represent subsystem 1, can conveniently be initiated as the diabatic eigenstates.
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5.2 Gaussian MCTDH

In this section we are going to present a MCTDH scheme formulated in terms of a
non-orthogonal basis-set of Gaussian wave functions. This, still unpublished work,
is the result of a close collaboration with G. D. Billing. However, at present time,
I have not been able to implement the scheme in a numerically stable form, and
as such this project should be considered “work in progress”. To some extent this
numerical instability was not very surprising as will be discussed more in details
below. Consequently, no reliable numerical results will be presented, which also
explains for the relatively short discussion of this project. However, as it is for-
mally based on some of the same ideas as the generalized MCTDH scheme, to be
thoroughly discussed in the next chapters, this work serves as a good introduc-
tion. This is especially true for the variational principle employed in the explicit
derivation of the equations of motion. Therefore, we will focus somewhat on the
practical aspects of the derivations using the variational principle, which allow us
to elaborate less on this particular step in the derivations to be presented in the
subsequent chapter.

5.2.1 The numerical scheme

For the sake of simplicity, we shall consider the time propagation of a multi-surface
system with only one degree of freedom, R. In a diabatic representation, discussed
in section 3.1, the time-dependent Schrodinger equation read as

0 ~
il U(R,t) = (T + Va(R) Wa( R, 1) + > W, Uy(R,t) (5.12)
s'#s
where T = —%% is the usual kinetic energy operator, and the index s refers

to the different electronic diabatic potential energy surfaces. For the different
surface-functions, ¥ (R, t), we introduce the following multi-trajectory expansion

U, (R, t) = i a; (t)®; (R, 1) (5.13)
where
P} (R, 1) = exp % {4 ()R- R} ()" + P(t) (R— R (1)) + 7 (1)} (5.14)

i.e. the surface-functions, ¥, (R,t), are expressed in a basis of Gaussian wave pack-
ets centered around the trajectories {Rj(t), | = 1,...,Ns}. The application
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of Gaussian wave packets (GWP) in dynamical calculations has been pioneered
mainly by Heller[53]. Thus, he originally introduced the notation in eq. (5.14)
where Af(t) is a width parameter, P#(¢) the momentum and 7/ (¢) a phase factor.
To maintain the physical interpretation of eq. (5.14) as a semi-classical particle
we are going to make two assumptions for the trajectories {R;(¢), | =1,..., Ns}.
First we assume that they are real and second that they are governed by classi-
cal Newtonian mechanics, i.e. Rf = P?/pu. (It can easily be shown from the final
equations of motion that this assumptions is strictly only satisfied for a single-term
expansion in eq. (5.13)). Consequently the momentum associated to the trajecto-
ries, { P?(t), l = 1,..., N}, are also real. To derive differential equations of motion
for the remaining 4 parameters {a}, Als , P?.~4;}, we apply the Dirac-Frenkel vari-
ational principle[54, 55], (5\I!|zh H|‘IJ) = 0, which in the multi-surface diabatic
representation of eq. (5.12) takes the form

<5w3‘(2h% - ﬁs)‘lls - Z Ws,s"ljs’> =0 (515)
s'#s

where respectively the bra and ket read as

X (00, L Oy, OU o0, .,
o0, = lz_: { oa; da; g yT 0AT + apsapl o 5%} (5.16)
and
L0 4 L

(i —H)¥, — %: W, Uy = ilil, — (T + V) U, - g W,oTy  (5.17a)

N Ns N Nyt
—inY (a;@; + afcb;) -3 g (T + V) &~ 3 @ W,0®  (5.17b)

1=1 1=1 s'#s =1

In eq. (5.16), (5.17) and in the remaining of this section, we have, for the sake
of simplicity, ignored the arguments R and t. The partial derivatives entering
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eq. (5.16) are easily obtained using the definitions in eq. (5.13) and (5.14)°
oY,

9 — (5.18a)
l

ov,

] (5.18b)
l

7

gpj x al(R— R)®! (5.18¢)
l

8‘115 s S s

oA > a}(R — R})*®; (5.18d)

To obtain auxiliary expressions for the two derivatives entering eq. (5.17b) we
once more make use of eq. (5.14)

.3 Z 'S S '3 3.3 s .5 3'3 s
) = g{Al(R—Rl)ng (B —2A1Rl) (R—R})+7% —PlRl}<I>l (5.19a)
2 1

According to the Dirac-Frenkel variational principle, eq. (5.15), we finally obtain
the equations of motion for the variables a = {a, A, P,y} by the stationary condi-
tions

ovy .0 =~
— —H,)U, — W) = 2
T 157 = B = 2 W 02) =0 (5:20)

{

Thus, by successively substituting each of eq. (5.18) and eq. (5.17b) into eq. (5.20)
we obtain (after some tedious but simple algebra) two sets of highly non-linear
coupled differential matrix-equations. The first set (obtained from eq. (5.20) with
« = a) is the equation of motion for the expansion coefficients, af(t) in eq. (5.13),

A8 -8, =H, 2, + ) WS 8 (5.21)

where a, denotes the column-vector of the expansion coefficients on surface s. This
differential equation is coupled to the second set of equation of motion (obtained

5The proportionality signs in eq. (5.18b), (5.18c) and (5.18d) are due to the neglect of the
prefactor  which can be ignored in eq. (5.20).
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from eq. (5.20) with o = {A, P,v}) which describes the
Gaussian wave packet parameters entering the definition in

time-evolution of the
eq. (5.14)

M(oo) M(m) M(02) XgO)-I [Xm
M0 MUY M2 | xO | = |y O
gizo) gim) gizz) ng) ng)

(5.22)

In these two sets of differential equations of motion we have defined the following

matrices

EJ - [§§00)Lz [XEO)L 4 [%01)

509, = [ antop (- By (R - Riya)
], = araf | an(op (R R (R - Ri)er)
Vo) oo / Z dR{®" (R — Ry)"Vi(R — R))"®;}
wor] = / Z AR {0 (R = R Wi (R — R))"®}' }

'X(m

S

=t

the equations above we have furthermore introduced a

Soat[g”], - ekl

k

In

i|kl [Xgl)}z * [§§O2)Lz [X'(f)}z * [¥§00)}kl (5-232)

(5.23b)
(5.23c)
(5.23d)

(5.23e)

| o Z ; af [ W lk,} (5.23f)

new set of variables,

X© X® and X defined from the following convenient combinations of the

three Gaussian parameters

o] : hA:  Pf? hA: P2

X0 =4t -Rp -t o 22Tl (54m)
L 2p % %

- - X 2 A3 Ps A

XM = PP —2R:A} + L L _pr (5.24b)
@] _ s, 248

X@| = As 4 22 (5.24¢)
L 41

Note that the second equality in eq. (5.24a) and (5.24b) follow from the assump-

tion R} =

P? /i mentioned, in the paragraph below eq. (5.14). Thus, instead for
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solving directly for the Gaussian parameters, {A;, P, ~;}, it turns out to be more
convenient to introduce the new parameters listed in eq. (5.24). As an additional
constraint to the working equations, eq. (5.21) and (5.22), we shall assume that
the Gaussian wave packets, defined in eq. (5.14), remain normalized at all times.
This is easily shown to give the following requirement for the relation between the
imaginary components of the phase and width parameters

Im[y]] = —Z In (211;_17;:4?” (5.25)

However, in the following we are going to give a somewhat different motivation for
this normalization constraint. As mentioned before we assume that the center of
the wave packets follow the classical equation of motion, Rl‘” = P?/u, where R} is a
real function of time, classically known as a trajectory. Consequently Xgl), defined
in eq. (5.24b), is also a real function. However, so far no assumptions have been
made for the two other parameters, X\¥ and X!? and hence in the present form
eq. (5.22) is a compler matrix-equation. However, if we assume that they are also
real, i.e. Tm[X{¥] = Tm[X?] = 0, it follows that

_hIm[A}]
~ 4Im[Af]

Im[4;] = FiRe A}/ } (5.26)

Im[A?] = —4 Re A Im[A?]/

which is exactly the time-derivative of eq. (5.25). Hence, if the Gaussian wave
packets are initially normalized, and we assume that ng’), p = 1,2,3 are real
column-vectors, it follows from the above analysis that the normalization of the
wave packets is maintained as time evolves. This assumption on xgp), p=1,2,3
significantly simplifies the matrix-equation eq. (5.22), since it splits it into a real
and imaginary part. In the remaining of this section we will only focus on the real
part of eq. (5.22), corresponding to redefining Mgpq) and 19’) to the real parts of

respectively eq. (5.23c) and eq. (5.23f).

At this point it is very important to note that even though the Gaussian basis
functions are normalized, they are not orthogonal. This, as it turns out, is a
very complicating feature of the presented scheme. We shall discuss this problem
in more detail in the next subsection, but for now we just note that because the
underlying basis-set in this scheme is not by construction orthogonal, the functions
may become almost linearly dependent (i.e. overlap) as time evolves. Consequently
there is no guarantee that the overlap-matrix, §£00), defined in eq. (5.23b), is not
singular, which in turn makes the solution (i.e. inversion) of eq. (5.21) numerically
very difficult. In order to make it possible to explicitly monitor the numerical
scheme for such singularities, we perform a similarity-transformation of eq. (5.21),
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corresponding a change of basis-set to a orthonormal representation. Thus, we
recast eq. (5.21) into the simpler form

ib, =H' b, +> W b, (5.27)
where the matrices, H' and W'ss, , and the new expansion coefficients, b;, and its
time-derivatives, are “defined through the linear transformations

H =D'-H-D W' =pt - w.p, (5.284)
b,=D " -a, = a,=D -b, (5.28b)
b,=D "4, = 4,=D b, (5.28¢)

The explicit definition of the transformation-matrix 25 read as

D = U A2 (5.292)
A, = Ur-S™U, (5.29b)

where, according to eq. (5.29b), the unitary matrix U_and the diagonal matrix

A correspond to respectively the normalized elgenvectors and eigenvalues of the
overlap matrix defined in eq. (5.23b). Clearly, if any of the diagonal elements of
A_ become zero (or even close to zero), the transformation-matrix D, is singular
which in turn means that eq. (5.27) is ill-conditioned. Thus, from a numerical
point of view it is more convenient of solve eq. (5.27) than eq. (5.21) since we have
a better feel for the nature of the instability. However, it is important to emphasize
that we have still not overcome the problem of linear dependence of the underlying
basis-set. Another advantage of eq. (5.27) is that we also get an easy measure of
the convergence of the scheme. Using the definitions in eq. (5.28) and (5.29), and
the hermitian property of H and W(O0 it is easily seen that by construction the
b,’s satisfy the norm- _conservation

%ZE?'EFZ{E-hﬁbﬁ-bs}:O (5.30)

8§

Thus, if the calculation is initialized by a single Gaussian wave packet, eq. (5.30)
implies that when solving eq. (5.27) for b, the following simple normalization should
be satisfied at any time ¢

Zibf*(t)bf(t) =1 (5.31)
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However, as will be clarified in the next subsection, the largest numerical problems
actually seemed to be associated to the other matrix equation,eq. (5.22), due the
initial conditions of the system.

5.2.2 The numerical implementation

For the numerical implementation I chose the same system as will be studied in
detail in section 6.2. Thus, the potential energy functions entering eq. (5.23d),
(5.23e) and (5.23f) read as

Vi(R) = Vjexp[—2(R — Reross)] (5.32a)
Va(R) = Vi exp[=2(R — Reross)] + AE (5.32b)
Wis(R) = Wai(R) = Wyexp [-AW (R — Reross)’] (5.32¢)

where the values of the parameters are listed in table 6.1. With this convenient
choice of the system, the resulting potential matrix-elements can be solved analyt-
ically.

The problem of inverting eq. (5.21) has already been discussed above, see text re-
lated to eq. (5.27). However, also the second matrix equation of motion, eq. (5.22),
causes serious numerical problems, as it is initially singular due to the initial con-
ditions on the expansion coefficients, aj(t), entering the definition in eq. (5.23c).
The overall idea behind the Gaussian MCTDH scheme, just presented, is exactly
that the system is initiated in a single Gaussian configuration, and then, as time
evolves, more and more Gaussian configurations gets occupied. In this way we have
a scheme where semi-classical particles, so to speak, are “generated” as needed
when the system becomes less and less classical. Actually, it should be stressed
that in the limit of an infinite number of Gaussian basis functions, the presented
scheme is in principle exact. Thus, only one of the expansion coefficients, a;(t),
are nonzero at ¢ = 0, which in turn leads to a initially singular Mgpq) matrix in
eq. (5.22).

At this point it is important to emphasize that the type of matrix singularity
problems mentioned above, has been noted by several authors before, in the con-
text of other time-dependent variational methods, e.g. [56-58]. Hence, it seems
appropriate to give a more general characteristics of the nature of the underlying
problem. In short these problems are caused by a form of over-completeness (i.e.
linear dependence) of the set of parameters used to represent the overall system.
In the present case these parameters are of course {aj, Af, P?,+’}. The numeri-
cal difficulties can thus be traced to the presence of redundant parameters that,
roughly speaking, simply duplicates the effect of others. However, the problem
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cannot be solved merely by reducing the number of parameters, since at differ-
ent stages of the propagation a different number of parameters are required for
an accurate representation of the wave function. Clearly, unless this problem can
be solved, the number of parameters that can be included, and thus the accu-
racy of the variational method, is limited. This effect that the scheme is actually
destabilized by increasing the number of parameters in the calculation was exactly
observed in the present numerical implementation. With only a single Gaussian
wave function in eq. (5.13) (corresponding to a true semi-classical calculation) the
scheme was of course completely stable, which was naturally no surprise as the
singularities in this case are absent. However, as soon as we included two functions
the differential equations became ill-behaved, and as this number was increased we
eventually started to get arbitrary results for the norm(cf. eq. (5.31)) and energy
of the system.

In a paper by Kay[58], this problem of matrix singularities in time-dependent vari-
ational methods is exactly addresses. Based on simple linear algebraic arguments
he proposes a selective inversion of the matrix equations where the singularity is
supposedly handled by ignoring certain elements. However, I did not have much
success with this scheme, and to see way we will briefly mention the scheme for the
matrix inversion in eq. (5.22). The interested reader is referred to reference [58]
for more details. According to Kay a stable inversion is obtained through the
approximation

X~) B7'C;-Cl-Y+> AC, (5.33)
J r

where X and Y collectively denote the two columns vectors in eq. (5.22), ; is the
j’th eigenvalue of the M matrix with the corresponding eigenvector C; and A; is
an arbitrary value. In eq. (5.33), the first sum extends over effectively nonzero
eigenvalues, ; > cutoff, while the second sum extends over eigenvalues that are
effectively zero, 8; < cutoff. The problem with this scheme was that the results
from the inversion turned out to be very sensitive and dependent on the cutoff value
and the arbitrary coefficients A;. So, all in all it appears that this approach does
not solve all the problems with the Gaussian MCTDH scheme, and we conclude
that fortunately there is more work to be done.
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The quantum dynamical treatment of multidimensional problems is one of the
major challenges in theoretical chemistry. As mentioned in the introduction to the
previous chapter, the underlying problem is related to the fact that most methods
scale with the dimension and the number of degrees of freedom, in an unfortunate
fashion. For state-expansion methods it is typically as N® where N is the number of
quantum states necessary for obtaining convergence. This number usually includes
the energetically open states, as well as a good deal of closed ones. In order to
reduce the number of states one can relax on the amount of information needed so
as to obtain just total, i.e. state summed, reaction cross sections or total reaction
rates[59-63]. Another avenue is to introduce an approximate description, using
approximate wave functions as in the SCTDSCF or MCTDSCF just discussed
in section 5.1, mixed quantum-classical methods[64-68] or reduced dimensionality
calculations[69-72].

At present exact methods are restricted to treat 3-4 atomic systems and single
surface problems. However, many chemical reactions, as those involving ions or
open-shell systems, are inherently multi-surface problems. Even apparent single
surface problems have due to the geometric phase effects[29-32] turned out to in-
volve the effect of more than one electronic potential energy surface, even for neu-
tral reactions. Considering this complexity, it is obvious that one in most cases has
to introduce approximate descriptions where only part of the system is described
using "exact” methods. We have already mentioned several of such approximate
methods above. Other approaches, which introduces methods for rotational aver-
aged cross-sections and approximate dynamics for part of the system, combined
with exact dynamic for the reaction center, have been suggested recently[73].

However, one very interesting recent suggestion is connected to the MCTDH method
[61,74,75] in which one can optimize the basis-set as a function of time and vary



80

Generalized MCTDH

the number of basis-functions according to the coupling. Thus, the method has
enough flexibility for dealing with the many different situations encountered in colli-
sion theory. In the limit of many basis-functions it is furthermore exact. However,
whether it in this limit is more advantageous to use, than other exact methods
involving e.g. grid or state-expansion is an open question. In this chapter the
method is generalized to multi-surface problems and its performance on a simple
model system is investigated.

This chapter, which is largely based on a publication[1] (see A.1 in part IV for the
abstract), is organized as follows. In section 6.1 we derive the equations of mo-
tion for the generalized MCTDH scheme, using a compact notation. Section 6.2
then presents a numerical study of a simple model system. In subsection 6.2.1
the numerical scheme for the generalized MCTDH method is presented, and in
subsection 6.2.2 a numerically exact solution of the non-adiabatic problem is out-
lined. The numerical results are then reported in subsection 6.2.3, and a com-
parison of the two methods is subsequently made. Finally section 6.3 concludes
and sums up the most important features of the generalized MCTDH method, as
compared to the direct method.

6.1 Equations of motion for the Generalized MCTDH
scheme

In this section we will derive the nuclear equations of motion for a general non-
adiabatic system treated in the MCTDH framework. The single-surface MCTDH
scheme originates from Meyer and coworkers[51,74, 75|, and using this work as a
starting-point we are able to derive a new set of extended multi-surface working
equations. The MCTDH method has been used before to study non-adiabatic pro-
cesses, like the photodissociation (i.e. half-collision) of CH3I[76-80] and ICN][81],
but the employed schemes, as we shall demonstrate, are not as general as the one
to be presented in this chapter. The equations of motion are obtained by means of
the Dirac-Frenkel variational principle[55], and in the derivations we go somewhat
along the same lines as Meyer et al., however with important differences. First of
all the explicit derivations are given in more details, and with better motivations,
and secondly we will adopt an improved notation. At the end of this section the nu-
merical scheme is commented upon, and we especially emphasize some important
differences compared to the original MCTDH scheme.

Let us consider a general system with the time-independent Hamiltonian

H;:(Q,X)=To+Tx +V(Q,X) =Ty +H(Q, X) (6.1)
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where () and X collectively denote respectively the nuclear and the electronic
coordinates. The total wave function is next expressed as the direct product sum

U(Q, X, t) Z 0%(X)T,(Q,1) (6.2)

where ©%(X) are the usual diabatic electronic states (see section 3.1) defined as
eigenfunction of fI, introduced in eq. (6.1), with the nuclear reference configuration
Q°. To define the time-dependent nuclear wave functions, ¥,(Q,t), we project
the total time-dependent Schrédinger equation onto the diabatic electronic states.
Thus, we insert the expansion, eq. (6.2), into the time-dependent Schrédinger
equation with the Hamiltonian given by eq. (6.1), and multiply it by ©%"(X)
followed by an integrating over all the electronic degrees of freedom. The resulting
coupled equations read as

i, (Q,t) = [To+(OURION] W,(Q.1) + > (OUHI6%) T, (Q,1
s'#s
= H'0U,(Q.1)+ ) Wew(QUy(Q,1) (6.3)
s'#s

where we have defined the effective nuclear Hamiltonian ﬁs, on the electronically
diabatic surface s, and the coupling elements W, o, cf. eq. (3.10).

Now, let us assume that the system has N nuclear degrees of freedom, i.e. Q@ =
(Q1,...,Qn), and that HS in eq. (6.3), can be separated into an uncorrelated
part, given by h“” and a residual correlated part H*

corr

N
=Y " hi(Q.) + HL,.(Q) (6.4)
k=1

The fundamental ansatz in the multi-configuration time-dependent Hartree scheme
(like for the MCTDSCF) is to assume that the total wave function, on a given
electronic surface s, can be expressed in the direct product-form[51]

My My N
=D > A O] @a =) A0  (65)
k=1 J

a=l  jn=1

where A% . (t) denote the expansion coefficients, and ¢3 (Qx, 1) are the so-called
single particle functions. The M, dimensions correspond to the number of configu-
rations included in the expansion of W, for the different nuclear degrees of freedom,
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Q- To simplify the notation considerably we have also in eq. (6.5) introduced the

multi-index J = {j1, j2, . - -, jn } and the many-particle configuration functions
N
5= 1]45.(Qx 1) (6.6)
k=1

It is important to note that both the expansion coefficients and the single parti-
cle functions are time-dependent. To remove this redundancy from eq. (6.5) the
following constraints are put on the single particle functions

i3, (8)|65, (1)) = (85, (£) B3] 85, (1)) (6.7)

where h? is defined in eq. (6.4). By expanding the time derivative of { :(t)|#3 (t))
and using the fact that h? is Hermitian, it can easily be shown that eq. (6.7) implies
that the single particle functions have a constant norm. Hence, if we further
assume that the single particle functions are initially normalized, the following
normalization applies at all times

(8:,(0)]65, (1) = i (6.8)

which, from the definition in eq. (6.6), is readily shown to give the following nor-
malization constraint on the configuration functions

<q)§|¢3(]> == 5I,J (69)

The equations of motion for the expansion coefficients, A%(t), and the single par-
ticle functions, ¢} (Q,t), are derived from the Dirac-Frenkel variational princi-
ple[55], which was already introduced in subsection 5.2.1. Just as then we now
take the diabatic viewpoint in which the Dirac-Frenkel variational principle has
the from

0 ~
o0V, |(th— — H*)W, — ssWy) = 1
(00— Y, — S W) = 0 (6.10)
s'#s
From the fundamental multi-configuration expansion of eq. (6.5) it immediately

follows that the variation of the total single-surface function, ¥,, can be expressed

as’!

5‘Ijs = aAs Z aqﬁsN 6¢S (611)

!Note that the first sum in eq. (6.11) is over a multi-index, J = {j1, jo, ..., jn}, whereas the

last sum is actually a double summation since > Zn " M et
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Next we substitute eq. (6.11) into eq. (6.10) and make use of the fact that the Dirac-
Frenkel variational principle assumes stationary conditions with respect to all of
the involved parameters (i.e. for all of the variations 6 A% and §¢3 ). This result in
the following two important conditions on the single-surface wave functions

(Sjs |(3 h2 —H)T, - ) W,y Uy)=0, forallJ (6.12a)
I__'és

<g§; |(3 h2 - s— > Weglu)=0, forall j, (6.12b)
I:/és

which in turn form the very starting point for the derivations of the working
equations for the generalized MCTDH scheme. However, before we proceed, we will
introduce a useful notation that will help us simplify these derivations considerably.

Consider first the so-called single-hole functions|74]

Mg—1 Mgy

‘IJS Q{'%}’ Z Z Z Z 1 yeeesfin—1yir o Jrt-15-- ,JN(t)

j1=1 Je—1=1jr1=1 Jn=1

X H 9; (Qu,t) = Z A 1@ (6.13)
K =1 J{#}
K #£Kk
where we have introduced the new multi-index J{#} = {j1,...,Jx 1, Jrt1,- -, N}

Thus, throughout the rest of this chapter the {#}-single-hole-index collectively
denotes all the nuclear degrees of freedom except Q.. Using this new notation, we
can derive a set of important auxiliary relations which will make the subsequent
derivation of the generalized equations of motion for the single-particle functions
much easier. We first note that ¥, can be expressed as

¥, = Z‘l’ =) A @ (6.14)

Jn it}
Using the definition in eq. (6.6) it immediately follows that
¥ = 2. 9%m (6.15b)
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These relations can be used to show the constraint for the configuration functions,
corresponding to eq. (6.7),

i(®5|9%) = ik (B |®504)(85165.) (6.16a)
= D (Piyl @) (05, 03165, (6.16b)
= (®}]) hy|®%) (6.16¢)

Next we note that equivalent relations exist for the single-hole configuration func-
tions,

(@1 |®70n) = Orpmrim (6.17a)
i@ P50) = (Dhgl D BUD5y) (6.17b)
K'#K

Now let us return to the problem of deriving the equations of motion for the gener-
alized MCTDH scheme, using the Dirac-Frenkel variational conditions in eq. (6.12).
From eq. (6.5) and eq. (6.14) it immediately follows that the partial derivatives in
the bra-notations, entering eq. (6.12), can be expressed as respectively

v,

o = (6.18a)
ov,

50 : (6.18b)

To derive the equations of motion for the expansion coefficients, A%, we simply
substitute eq. (6.18a) into eq. (6.12a)? and make use of eq. (6.3), (6.4), (6.5) and
(6.9). The result is

ZhASJ = <(I)j| {ﬁiorr|qjs> + Z W5,3'|‘1;8'>} (619&)
s'#£s
=Y ANSHHL,, 197 +) ) AT(®FW, (@)  (6.19b)
I s'#£s I

2Note that this corresponds to multiplying eq. (6.3) by ®%*, followed by an integration over
all the nuclear coordinates, Q.
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We will comment on this equation later when we have derived the last set of
equations which together with eq. (6.19b) make up the working equations for the
presented generalized MCTDH scheme.

We are now finally ready to begin the derivations of the equation of motion for the
single-particle functions. Contrary to those of the expansion coefficients, A% (cf.
eq. (6.19b)) the derivations to be presented below involve a lot of tedious algebraic
manipulations. However, as the resulting equations have never been presented in
the literature before, we found it appropriate to include some of the details of the
explicit derivation. Thus, if the reader, for some reason, is not interested in these
details, he or she is encouraged to move on to eq. (6.25).

As a prelude, we make use of eq. (6.4), (6.5) and (6.14) to rewrite eq. (6.3) as

i, = thAs O +ihy VL D A ®in b,

Jr J{x}
_ s Tos (6.20)
Z Wb+ DA (DB, o 4,
J{x} K' £k
+ Hiorrqjs + Z WS,S'\IIS'

s'#s
To explicitly derive the equations of motion for the single-particle functions, ¢7 ,

we substitute eq. (6.18b) and (6.20) into the Dirac-Frenkel variational condition of
eq. (6.12b) 3. This gives

th (U WS008+ D AL Ao (Pin | 951085,

{g}, J{w}
= Z (WIS OBE+ D AL A (@l D Bul®h) ¢ s (6:21)
I{e}, I {1} K'#K
+ <\Ilfn| {Hzorr|\118> + Z WS,S"\I,S'>} - Zh Z A.S}(\II;: |(I).SI>
s'#s J

3This corresponds to projecting eq. (6.20) onto the single-hole functions (¥f | or equally
multiplying eq. (6.20) by eq. (6.13) followed by an integration over all the nuclear coordinates
except Q.
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Next we substitute A% in the last term of eq. (6.21) by eq. (6.19a) and make use
of eq. (6.17) to reduce it. The result read as

mzwmm:zwm;ghzqﬁ;ﬁm{ U+ S Walv, }
Jr

Jr s'#s
- {Z(‘I’ilq"“ﬁ@il} { corr | ¥s) + ZWS,SI\‘I’SI>} (6.22)
J s'#s
= Z<‘1]fn‘\l,§n>ﬁi¢;n + {<\Ilfn| - 6;} { corr + Z Ws s’|\Il }
Jr s'#s

where we have defined (A);?'c =D (Vs [®5)(®5|. Using eq. (6.5), (6.13) and (6.17),
O; can next be simplified to:

0.

K

DD D A (P [R50 |65,)(85,1 (D5

Jn J{e} I{x}

= {Zkbi)( il} DALl ®pg)
Jr

J{n'}

= {ZW | } Ui | = Pi(Us | = (U2 P2 (6.23)

where P? = > 95.0(¢5.| is the time-dependent projection operator onto the
space spanned by the single-particle functions in the coordinate (), on the elec-
tronic surface s. The last commutation relation in eq. (6.23) follow directly from
the definition of the single-hole functions. If we finally back-substitute eq. (6.23)
into eq. (6.22) we obtain the following equation of motion for the single-particle
functions.

iYW w805, = Do(wr 1w )i, + {1 Py}
Jr

Ik
(6.24)
xz{w TG+ S Wa ) }
jfs ’#S

This equation is readily inverted to give the final equations of motion for the
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single-particle functions,

ihg =hie’ + (L)) (1—132) <<Acorr we + D (Wss) (@’ ) (6.25)
’#3

where we have adopted a vector/matrix notation with ¢* = [¢7 ,¢5 ,..., ¢ )t
Along the same lines as Meyer et al.[51,74] we have furthermore mtroduced the
time-dependent mean-field operators,

|:<Hi0f1”>{’7(}_i j = < |Hcor7'|kps'n> (626&)

[(Ws,s'>{¢}_i L= (W ) (6.26b)

[<é>{¢} » = <\I;;9N|\I;SN> = ZA;?:,IW}A;M[{,%} (6.260)
S 14}

where the bra-ket notation is to be understood as an integration over all the degrees
of freedom ezcept @),.. Note especially the simple expression for the unit mean-field
“operator”, eq. (6.26¢), due to the orthonormality of the single-hole configuration
functions, eq. (6.17a). The diagonal element [(15){4];, . display the population of
the single-particle function ¢;, , and thus it is denoted the density matriz.
Eq. (6.19b) and eq. (6.25) make up the total working equations for the presented
generalized MCTDH scheme. In the equation of motion for the A%-coefficients,
q. (6.19b), only the correlation part of the Hamiltonian and the non-adiabatic
couphng terms enter. HCOM describes the correlation among the different configu-
rations on a single electronic surface, and W ¢ contains the non-adiabatic coupling
terms which are responsible for the transitions from one diabatic potential surface
to another. Eq. (6.25) further contains the single-particle Hamiltonians, h?, that
propagates the single-particle functions into the same Hilbert space as time evolves.
The (1 — P7) operator in front of the second term of eq. (6.25) assures that the
correction to the single-particle functions, due to correlation and non-adiabatic cou-
pling, is added from the Hilbert space which is orthogonal to this space. It should
also be emphasized that in the MCTDH scheme the non-correlated single-particle
Hamiltonians, first introduced in eq. (6.4), are chosen somewhat arbitrarily. This
adds a very important technical degree of freedom to the scheme, corresponding
to a “restricted freedom” when choosing the initial single-particle functions. Thus,
in general the single-particle functions do not have any physical significance, and
consequently single-particle properties can not directly be calculated. However, by
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diagonalizing the density matrix, defined in eq. (6.26¢), one can uniquely define a
set of single-particle functions. These, so-called natural single-particle functions,
have physical significance and can, as we will demonstrate in the next chapter, be
used to evaluate the overall convergence with respect to a given number of single-
particle functions employed in the scheme. This approach actually resembles the
construction of natural orbitals in electronic structure theory.

Next we note that if we especially choose ﬂi = 0 and employ a large enough
basis-set, i.e. f’i = Zjn ¢5.)(#5.| = 1, the single-particle functions become time-
independent, while eq. (6.19b) stays unchanged (except that now HZ,_ = H?).
This is precisely the equations of motion for the numerically exact solution of
the non-adiabatic problem using a conventional time-independent state-expansion.
Thus, we make the very important observation that the given generalized MCTDH
scheme includes the exact solution as a limited case.

Now, we comment on the multi-dimensional integrals entering eq. (6.19b) and
eq. (6.25) as respectively the time-dependent mean-field operators and matrix el-
ements over I/-\IZOM and W, o. As discussed in section 2.2, the normal procedure
for evaluating multi-dimensional integrals of these types would be as follows: First
one defines a set of orthonormal ad hoc basis-sets in each of the nuclear degrees
of freedom (e.g. particle in a box basis-sets). These basis functions define an ad
hoc discrete variable representations (DVR) in each dimension in the usual way.
However, since they are chosen somewhat arbitrarily they do not reflect the physics
of the system. In other words we would like to construct a set of DVR grids, in
each dimension, that reflects the topology of the involved potential energy sur-
faces, such that the grids are dense in regions where the de Broglie wavelength is
small and more sparse elsewhere. For a simple single-surface problem, as consid-
ered by Meyer and coworkers[51, 74, 75], one would normally employ the optimizing
scheme[82] based on the HEG method[26] discussed in detail in subsection 2.2.6.
To repeat, in this scheme one first constructs sets of eigenfunctions of zero-order
Hamiltonians, which in this case would be the single-particle operators. Each of
these basis-sets, expressed in the ad hoc basis, are then truncated according to the
collision energy. The resulting compact basis-sets are then used to construct new
“physically meaningful” DVR basis-sets by diagonalizing the position operator.
The eigenfunctions define sets of compact DVR basis-sets where the correspond-
ing eigenvalues are the optimized grid points. This is a very powerful scheme for
constructing optimized compact DVR basis-sets in single-surface problems, and in
the next part of this thesis we shall use it extensively. However, in the present con-
text, the single-particle operators, h;, defined in the generalized MCTDH scheme,
refer to different potential energy surfaces, and therefore a naive application of the
HEG scheme would result in many different DVR grids in each coordinate. Conse-
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quently, the non-adiabatic coupling elements, entering eq. (6.19b) and eq. (6.25),
could not be handled numerically within the same DVR-scheme. Thus, it is not
clear how one should construct a unique optimized DVR scheme in each of the
nuclear degrees of freedom. All this is of course not an artifact of the generalized
MCTDH scheme itself, but simply a consequence of the complexity of multi-surface
systems. However, it means that a great computational/numerical advantage of
the MCTDH scheme has been lost in the course of generalizing it to non-adiabatic
systems.

Finally we comment of the previous schemes used in the literature to study non-
adiabatic processes in the framework of the MCTDH method [76-81]. In the work
presented in reference [76-78] the same single-particle functions are used for all
the electronic states, whereas we use a separate set for each of the surfaces (hence
the index s on @3 (Qx,t)). Thus, they simply use one of the coordinates, Q
in eq. (6.5), as a grid-less coordinate for the electronic state. Fang et al.[79-81]
derive an non-adiabatic scheme for explicitly a two-surface two-dimensional system,
which as we will show in the next chapter actually corresponds to the special case
of h,, = 0 in our general multi-surface multi-dimensional scheme. Thus, the scheme
of Fang et al. is not just a special case of our general scheme, it is actually also
less effective as it does not correspond to an interaction representation, where a
zero-order Hamiltonian is defined in each degree of freedom.

6.2 Numerical calculations on a model system

In this section we present a numerical study of a simple non-adiabatic model system
conducted in the framework of the generalized MCTDH approach presented in the
previous section. The results are subsequently compared to numerically exact
calculations employing a Split-operator propagation scheme. Finally convergence
and consumed CPU-time for the two schemes are compared.

The system of choice is a simple one-dimensional two-surface model that can easily
be solved numerically exact. The coupled nuclear equations, eq. (6.3), read as

T+Vi(z) W) | [‘1’1 (“3’?] (6.27)

W, (2, 1) W(z) T+Va(z)| [Y2(2,t)
where T = —%% and the potential energy curves and the non-adiabatic coupling
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term are taken to be

I/1("17) = %1 €xXp [_2(3: - xcmss)] (628&)
Va(z) = wV5exp[—2(z — Zoross)] + AE (6.28b)
W(‘T) = WO €xXp [—AW(JI - xcross)z] (6280)

Zeross denotes the crossing point of the two diabatic potential energy curves, AE
is the asymptotic splitting of the curves and {V', V2, Wy, AW} are parameters of
respectively the two surfaces and the non-adiabatic Gaussian coupling term, W.
The employed numerical values of these potential parameters are listed in table 6.1,
and a plot of Vi(z), Va(z) and W(z), and the corresponding adiabatic curves, is
shown in figure 6.1.
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Diabatic potential 1(V1) —
T Diabatic potential 2(V3) — — 7|
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Figure 6.1: Plot of the different potential energy curves mentioned in the text.

In both of the numerical schemes we adapt the usual wavepacket formulation of
a scattering experiment [53]. Thus, the system is started on the lowest electronic
surface, V;(z), by initiating the wave function as

U, (z,t = 0) B N B G S (6.29a)
= = X - - .
L m(2x3 + x3) Lol I —— 0

Uy (z,6=0) = 0 (6.29b)

where we have defined the constants z; = (2A3:0)2 and zo = 2(zo — T o)/ ko-
Eq. (6.29a) is nothing but a normalized Gaussian wavepacket, centered around
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ko, with the additional property that it has its minimum width, Azg, at z .,
different from the initial starting point zo [53,83]. If we then fix zs, as the
classical turning-point on V;(z), we have reduced the interference problems that
occur where part of the wavepacket reaches the end of the grid while a significant
part of the wave function is still in the reaction zone. However, the use of a focusing
wavepacket, alone, is not sufficient to avoid artificial boundary effects in most
computationally realistic calculations. Consequently we will have to use additional
numerical techniques to further minimize the artifacts inevitably following the use
of a finite basis expansion of the wave function. Thus, both schemes make use
of absorbing boundary conditions, in the form of a negative imaginary potential
(NIP), but as we shall see the two implementations are very different.

6.2.1 Model study of the generalized MCTDH

First we note that because the considered system is one-dimensional there is no
residual correlation term in the Hamiltonian, i.e. H:, .. = 0 in eq. (6.4). Thus,
eq. (6.19b) for the model system reduces to

it A = (0162 A% (6.300)
AR = (G [91) ALD (6.300)

For the single-particle functions we are going to make an assumption previously

make by Jédckle and Meyer[75] in a single-surface calculation on the collinear
H + Hy — H, + H reaction (see equation (14) and (17) in this reference). The
assumption is to neglect the mean-field operator (here W (z)) such that eq. (6.25)
simplifies to

oG t) =BG t)  (s=1,2) (6.31)

As noted in reference [75], this can in certain situations (like the present) lead to a
faster scheme. Actually this is equivalent to assuming that 2/152 =) |55~ 1
in eq. (6.25). This, in turn corresponds to the exact limit of the MCTDH scheme,
which is exactly what we want the study?. Next we define the single-particle
Hamiltonians as

b =T+V,(z) (s=1,2) (6.32)

4If we, on the other hand, did not make this assumption, it is easy to show that with one
single-particle function we would just return to the original set of coupled equations, given in
eq. (6.30). A direct solution of eq. (6.30) is however the topic of the next subsection.
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Now, if we initiate the single-particle functions as eigenfunctions of respectively h!
and h?, the single-particle constrain, eq. (6.16) and eq. (6.9), is trivially fulfilled,
and the solution to eq. (6.31) simply reads as

i (z,t) = e FG(2,0) (s =1,2) (6.33)

where Bl and E? are eigenvalue number i of respectively h' and h2. Thus, the
propagation of the single-particle functions is now trivial, and we are left with
eq. (6.30) as the working equation. To numerically integrate this equation we next
employ an ad hoc basis. We use the following normalized particle-in-a-box basis-set

{wn () = \/Zsin (Z:“;) n=1,. N} (6.34)

where the domain of interest for the coordinate is assumed to be scaled to the
interval z €]0; &0, |- As discussed in subsection 2.2.5, this FBR is isomorphic to a
DVR basis-set, {|z,), p =1, N}, with the underlying uniform grid {z, = pAz p =
1, N} and the constant weight W = Az = 2,4, /(N + 1). On this grid eq. (6.30)
takes the form

d A .
A = —%jzpqs} (ep )W (3,) 83 (3,,t) A2(t)  (6.350)
e
%Af(t) = 5D 6 (@ W (w,) 8} (e ) AL(L) (6:35D)
Jsp

As mentioned above {¢}} and {¢7} are defined as eigenfunctions of the single-
particle Hamiltonians. Hence, the single-particle functions, eq. (6.33), are initial-
ized on the grid as

o8 (2,,0) = Az~Y2U8 . (s =1,2) (6.36)

=Pt

where the unitary U*-matrices, defined in eq. (2.39), respectively diagonalize h! and

~

h? expressed in the DVR, {|z,), p =1, N}. The initialization of the A-coefficients
follow immediately from the initial conditions of the wavepacket discussed in the
previous subsection (eq. (6.29)). Thus, we write

AH0) = VAzY Ui (,,0) U (6.37a)

A2(0) = 0 (6.37b)

where ¥ (z,,0) is defined in eq. (6.29a). The numerical values of A}(0) can also be
used to truncate {¢}}, which in turn defines the number of single-particle functions
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included for both surfaces. Eq. (6.35) can now be integrated in time using e.g. a
predictor-corrector scheme. However, as some of the wavepacket reaches the end
of the grid it is reflected back into the reaction region, thus causing significant
inaccuracies. The reason for this is of course that in the present formulation the
wave function is assumed to be zero at the boundary, i.e. we have effectively placed
an infinite wall at x,,,,. The standard way of treating this difficulty is to employ an
absorbing boundary condition by adding to the Hamiltonian a negative imaginary
short-range potential in the asymptotic region of the grid [84]. Many different types
of NIP’s have been suggested in the literature, [85-87], but common to all of them
is that they are not, strictly speaking, perfect absorbers in the whole energy domain
represented by the wavepacket. We choose a simple linear “ramp-potential”
_Z'Vmaij;ﬂa Tnip S r S Tmax,

Vi ) = { (6.35)

0, otherwise,
where z,;, and V.« are parameters to be fitted to the scattering experiment at
hand. It is important to note that we cannot simply redefine the single-particle
Hamiltonians to include the NIP, as this will produce single-particle functions that
grow exponentially with time, because of complex eigenvalues entering eq. (6.33).
Thus, instead we will have to redefine the A-coefficients after each time-step to
include the damping factor of the NIP. Using the terminology of the split-operator
method, presented in subsection 4.1.2, this amounts to multiplying the wave func-
tion by exp [—iAtV,;,/fi], thus redefining the A-coefficients as

AFP() = (e[U) e (ggle AV )
rOAz Y AN (mp,t) e AT Ehgs (2, 1) (6.39)

JVp

after each successful propagation of eq. (6.35) by the time-step At.

6.2.2 Numerically exact calculations

To obtain a numerically exact solution of the coupled time-dependent Schrodinger
equation, see eq. (6.27), we employ the Split operator method [44], discussed in
subsection 4.1.2. Thus, to propagated the wave function a time-step At, we use
the non-adiabatic equivalent of eq. (4.5b), which reads as

U (2, + At) = exp [~iVAL/25] exp [—@At/h] exp [~iVAL/2H] U (z,t) (6.40)

In this operator matrix equation ¥ is a column vector, [¥;, Uy|7T, i isa2x2
diagonal matrix with the kinetic energy operator in the diagonal and V is defined
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as

_ [Vil@) — iVaip(2) W (z)
Y= W) vale) - Vi) (o4
where the individual potentials are given in eq. (6.28) and eq. (6.38). Note that in
this scheme we have simply included the NIP in the definition of the two potential
energy surfaces. To evaluate the action of exp [—iyAt / 2h], operating on the wave
function, it is necessary to make a unitary transformation to the adiabatic repre-
sentation in which eq. (6.41) is diagonal. At first sight this might seem impossible
since V is not strictly Hermitian, and thus the spectral theorem can not directly
be applied. However, given that we add the same NIP to the two surfaces, it is
easy to see that any unitary matrix that diagonalizes the potential energy matrix
without the NIP’s will also diagonalize eq. (6.41). Hence, if we discretize eq. (6.40)
and eq. (6.41) on an equidistant grid {z, = pAz, p =1, N}, we can for each grid
point, x,, construct a symmetric matrix U(z,) such that A = U" - V- U, where A
is diagonal with the elements A, and A,. Then the effect of applying the potential
operator, entering eq. (6.40), is evaluated according to the expression

exp [—iVAt/2h] = U - -U” (6.42)

exp [—iA1 At/2h] 0
0 exp [—iAy At/2h]

After the action of this (coordinate-local) operator onto the wave function, we
have to apply the kinetic energy operator exp [—iiAt/ h}, see eq. (6.40). The

effect of applying this differential operator is easily calculated by transforming
the wave function from the coordinate grid-representation to a momentum grid-
representation by means of a Fourier transformation. To return to the coordi-
nate representation we next perform an inverse Fourier transformation of the wave
function, and finally to complete the Split propagation by At we act the potential
energy operator, eq. (6.42), once more onto the result.

6.2.3 Numerical results for the two schemes

The numerical schemes presented in the two previous subsections were implemented
in FORTRAN 77 on a super-scalar vector computer. The integration of eq. (6.35)
was carried out by employing a predictor-corrector scheme of variable-order (up to
11'th order), and the action of the kinetic energy operator on the discretized wave
function was calculated using a FFT algorithm, see subsection 2.2.2. To extract
information from the calculations on the transition probabilities among the two
surfaces we evaluated the quantum flux, F', of the wave functions. In section 1.1
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we defined the flux operator in coordinate space (see eq. (1.9)), which is readily
recast to the following momentum representation,

F,(k,t) = hjs Wk, )] (s=1,2) (6.43)

where ky =k, ky = \/k2 — 2uAE/R? and

U (k1) = V%Tr / dz exp [ika] U, (2, 1) (6.44)

The transition probability from the initial state was then obtained as the ratio
between the outgoing fluxes and the initial incoming flux:
Fy(k,t*)

P =g =1 (6.45)

where the initial incoming flux, Fy(k,0), can be obtained analytically by inserting
eq. (6.29a) into eq. (6.44):

Azo |2
Fy(k, 0) = hku To \/; exp [~2Az62(k — ko)?] (6.46)

However, to directly calculate Fy(k,t*) in eq. (6.45), we would have to use a grid
large enough that at a certain time, t*, all of the wavepacket was well outside the
region of reaction and the domain of definition of the NIP. The solution is instead
to use the time/energy Fourier transform, Ul (z, F), defined as

1 o0
Ut (2, E) = —/dtex iEt/R|U,(z, ¢ 6.47
s (z,E) o p [iEt/h]V,(x, 1) (6.47)
rather than the space/momentum transform, ¥ (k,¢). One can then show the
simple relation (see appendix in reference [88])
U (z, B) = L emikogiBt /hgt (i 1) (6.48)

fik
Inserting this expression and eq. (6.46) into eq. (6.45) we finally obtain

R2kk,| U+ (2%, B2K2/2u)[?
Py(k) = U (%, B°k? /2p)|

= 6.49
Azop? exp [—2A$02(k — k0)2] (6.49)
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We then choose z* < x,;, and calculate the time/energy transform of the wave
functions, eq. (6.47), as a discrete sampling after each time-step At. Next, recalling
the discussion on conservation of flux in section 1.1 (see eq. (1.12)), we note that
the relation P;(k) 4+ P2(k) = 1, can then be used as a measure of convergence as
a function of k£ (in the neighborhood of kj). The total transition probabilities are
obtained from the ratio between the total fluxes, i.e.

/ dkkk, |V F (2%, 2% /2p) |” (6.50)

—00

2

kop?

Ptsot(ko) =

where we have used that the total flux of the Gaussian wavepacket is simply given
by hko/p. Again the sum from the two surfaces should give unity. As yet another
measure of the overall convergence we use the fact that both numerical schemas
are energy-conserving. (This follows formally from the Dirac-Frenkel variational
principle and the fact that the Split operator is unitary outside the NIP). From
eq. (6.29a) we obtain (k?) = kZ + zl—l which immediately leads to the following
expression for the time-independent mean-energy

(B) = %<k2> _ % <k§ + fﬁ) (6.51)

This number was then compared to (Uq|hy|¥y) + (Vs ha|Us) +2 Re [(U|W]|T5)] as
a functions of time for the two schemes.

Below in table 6.1 we have listed the values of the parameters that were fixed
throughout the calculation presented in this section.

In figure 6.2 the transition probability, P(k), is shown as a function of the wave
vector, k = 1/2uE /h. These probabilities were obtained by 7 MCTDH calculations
with 400 grid points and different values of ky = (30, 35, 40, 45, 50, 55,60). The
convergence was of the order of 107° with the split operator method employing
750 grid points. Figure 6.2 shows Stiickelberg oscillations [35] above the threshold
energy, AE = 1.5-100kJ/mol ~ k = 27A-1, and a very narrow peak at k = 45A 1
corresponding to F = 4-100 kJ /mol. The oscillations occur because the system has
a turning-point and thus interference will take place when the system follow the
different possible paths leading to the upper surface. The peak at £ = 4-100 kJ /mol
is an interesting indication of the formation of a resonance, which is actually the
topic of the next part of this thesis. Thus, here we see a nice example of the
connection between the two topics studied in this thesis. A closer inspection of
the adiabatic potential energy curves, see figure 6.1, exactly shows a well on the
upper surface at this value of the energy, which suggests that the system is trapped
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Table 6.1: Numerical values of the parameters fixed in the calculations.

The numbers are

reported in molecular units (see appendix A in reference [89]).

Parameters MCTDH! Common Split®
p(au) 1.0

Tonin (A) 0.0

Tmaz(A) 18.0

Propagation:

z*(A)? 10.0

At(10714s) 0.005° 0.002P
time-steps 4000P 15000
Precision 10-6¢ —d
Gaussian wavepacket:

zo(A) 10.0

T foc(A) 3.0

Axy(A) 0.25

Potentials:

Teross (A) 3.0

Vot (100kJ /mol) 2.0

VZ(100kJ /mol) 0.5

AE(100kJ/mol) 1.5

Wo(100kJ /mol) 2.0

AW (A-2) 11.09

Tnip(A) 13.5¢

Vinaz (100kJ /mol) 0.30°

aThe time sampling of the wave function at this grid point (see eq. (6.47), eq. (6.48) and

eq. (6.49)) was not started before the wavepacket was moving out of the reaction region.

b This parameter is actually a functions of kg, but the listed value was typical for most calcu-

lations.

¢ Input-parameter to the variable order predictor-corrector routine.

dThe Split operator method does not offer any control over the precision in the time-

propagation.

¢ This corresponds to a NIP which is defined on the last 25% of the grid-points.

f Generalized MCTDH as described in subsection 6.2.1.

& Split-operator scheme, employing the FFT algorithm, as described in subsection 6.2.2.
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Figure 6.2: The probability for transition from the initial state on the lower surface to a final
state on the upper surface is shown as a function of the wavenumber. The results were obtained
by the generalized MCTDH scheme, using seven different values of ko.

on the upper adiabatic surface for a short time before it tunnels out. This, as we
shall see in the next part, correspond to the formation of a shape resonance. The
exact position and life-time of the resonance can be calculated using the “complex
scaling of a DVR”-method, suggested recently by Museth et al. [4]. This we will
demonstrate in chapter 12.

In table 6.2 and 6.3 we have listed the convergence for the total transition prob-
abilities for respectively the Split operator and the MCTDH method. In all the
calculations kg, in eq. (6.50), was fixed to 3500kJ/mol and the remaining pa-
rameters as listed in table 6.1. Due to the fact that the NIP was not a perfect
absorber in all of the energy domain represented by the wavepacket, reflection was
inevitable and consequently convergence below 107° could not be obtained as a
result of merely increasing the grid size. Table 6.2 shows that the Split operator
method needs more than 750 grid points to ensure a convergence of the order of
107°. Given that the most time-consuming step in the Split operator scheme is
the one-dimensional FFT-call, we would expect the CPU-time to scale as N log N,
where N denotes the size of the grid. If we take an initialization-time into account,
this characteristic semi-linear time-dependence is confirmed by the second column
in table 6.2. Table 6.3 clearly shows that the MCTDH method needs much less
points, than the direct method, to achieve the same convergence, which is due to
the fact that in the MCTDH method the basis-sets are optimized as a function of
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Table 6.2: Convergence of the total transition probabilities in the Split operator method. In all
the tabulated calculations the initial Gaussian wavepacket was centered at ko = 35(A~1).

Grid size (N) Pi(ko) Pa(ko) Pi(ko) + Pa(ko) CPU sec. MFLOD®
200 0.54052 0.09937 0.63989 9.0 117
300 0.86115 0.13876 0.99991 12.3 119
400 0.86138 0.13857 0.99996 15.6 116
500 0.86139 0.13858 0.99997 19.5 120
750 0.86140 0.13858 0.99998 32.2 111
1000 0.86140 0.13858 1.00000 37.9 121

@ Million floating point operations pr. second on a single CPU of a Cray C92 (peak
performance is approximately 900 MFLOP).

Table 6.3: Convergence of the total transition probabilities in the generalized MCTDH scheme.
In all the tabulated calculations the initial Gaussian wavepacket was centered at ko = 35(A~1).

Grid size (N) M? Pl(ko) Pg(ko) P1 (ko) -+ P2 (ko) CPU sec. MFLOPb
200 200 0.15772 0.01767 0.17536 196 468
250 250 0.87679 0.12320 0.99998 227 490
300 300 0.86122 0.13879 1.00000 303 476
400 200 0.85919 0.14067 0.99986 142 455
400 267 0.86113 0.13887 0.99999 247 438
400 400 0.86140 0.13858 1.00000 505 477

& Number of single-particle functions included in the calculation.

b Million floating point operations pr. second on a single CPU of a Cray C92 (peak performance
is approximately 900 MFLOP).

time, 7.e. they follow the dynamics of the system as time evolves. Still, the number
of employed single-particle functions is relatively high, which is of course due to the
very simple form assumed for these functions. However, it should be emphasized
that the simple time-dependence of the single-particle functions (see eq. (6.33)) is
not trivial in the sense that it deals with the numerically difficult rapid oscillations
of the functions in an ad hoc way. Thus, if we had ignored this time-dependence,
and assumed a completely static form of the single-particle functions, we would
have to employ approximately as many functions as grid-points in the FFT scheme.

Table 6.3 shows that the full convergence is obtained with 400 only grid-points and
single-particle functions, and an acceptable precision remains when the former is
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truncated by a factor of % However, it is equally clear from table 6.3 that the
MCTDH scheme is approximately 10 times slower than the simple Split operator
method, even though the code ran 4-5 times faster on the same vector-computer.
This was of course a bit disappointing, but considering the complexity of the
MCTDH approximation - even for an as simple problem as the considered - it
was not surprising. It is difficult to make any conclusive remarks on the large
difference in the MFLOP performances of the two codes. However, it appears that
the predictor-corrector algorithm is more vectorized than the FFT. Finally we note
that the MCTDH method scales almost quadraticly with the dimensions, if we take
a certain initialization-time for the scheme into account. However, if we allow for
a smaller convergence by truncating the single-particle basis-sets, table 6.3 shows
an almost linear dependence of the CPU-time.

6.3 Conclusions

It is evident from the results presented in the previous section that for simple non-
adiabatic systems the generalized MCTDH method is not the method of choice
- especially not when one seeks numerically exact results. As expected from the
equations of motion for the MCTDH scheme, it is perfectly capable of producing
these exact results with a relatively small grid, but the cost in terms of CPU-
time is very large. Even in the approximate domain, the direct Split operator
method converges much faster - in spite of the fact that it uses twice as many grid-
points and 2-3 times as many time-steps. One major drawback of the generalized
MCTDH scheme was pointed out in section 6.1; the presented numerical scheme,
unlike the original MCTDH scheme, does not allow for the direct construction of an
optimized DVR, using the HEG-scheme. Consequently the definition of the ad hoc
basis-set is very critical for the overall numerical performance of the scheme. In the
calculations presented in the previous section we used a basis-set of particle in a
box functions, i.e. we used a uniform DVR-grid that does not reflect the underlying
physics of the problem. It is possible that we could have chosen a better ad hoc
basis for this concrete study, but the general problem of optimizing and truncating
the basis-sets and grids this still remains to be solved for multi-surface systems.

However, it is very important to emphasize that the considered model-system is
very simple, and therefore the use of an approximate method like, the generalized
MCTDH, may not prove advantageous as compared to more direct numerically
exact methods. The conclusion is clear for very simple non-adiabatic systems, but
it is likely that the picture will change when more complexity is added to the
system. The distinct advantage of the MCTDH scheme is exactly connected with
the large flexibility of the scheme to deal with complicated situations encountered
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in complex collision experiments. One can vary the number of basis-functions
according to the correlation and non-adiabatic coupling as time evolves, and the
numerical scheme scales almost linearly with the number of surfaces and degrees
of freedom (see reference [74]) - and these features have not yet been exploited.
Thus, a study of a multi-surface system with more degrees of freedom is required
to give any conclusive evaluation of the presented generalized MCTDH scheme.
This is exactly the topic of the next chapter.
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MCTDH on non-
adiabatic H,+Cu

The overall motivation of the work to be presented in this chapter is twofold (see
A.2 in part IV for the abstract). First of all we want to test the generalized
MCTDH scheme, derived in the previous chapter, on a two-dimensional two-surface
reactive system. Secondly we want to investigate the non-adiabatic effects involved
in the dynamical process of dissociation of hydrogen on a copper surface. However,
it is very important to emphasize that in the context of this thesis the first moti-
vation carries by fare the greatest weight, and as such the specific system, studied
below, is of less importance. This point is furthermore stressed by the fact that the
potential energy surfaces, on which the calculations were based, are probably not
very reliable. As will be clarified in the next section, improvements can be made on
these surfaces, which we plan to do in the very near future. Thus, in this chapter
we shall mainly focus on the implementation and performance of the generalized
MCTDH scheme, and only comment briefly on the physical interpretations of the
actual numerical results obtained.

The chapter is organized as follows. In section 7.1 we define the system to be
studied below, i.e. the electronic potential energy surfaces of Ho+Cu(100). Next,
in section 7.2, we present a simple scheme which is used to express these potential
energy surfaces in a direct product form in the two coordinates. Section 7.3 then
outlines the overall scheme for the MCTDH calculations, based on the equations
of motion derived in section 6.1. Thus, whenever possible, reference will be made
to the previous chapter, and we shall only focus on the new features of the scheme
which are relevant in the present context. This is also true for section 7.4, where
we briefly comment on the implementation of the split-operator scheme, previously
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discussed in subsection 6.2.2. The numerical results for the two schemes are next
presented in section 7.5, and finally we draw the conclusions in section 7.6.

7.1 The electronic potential energy surfaces

As stressed in the introduction to this chapter the aim of the presented work
is primarily to study the generalized MCTDH scheme on a non-adiabatic two-
dimensional system. As such, “any” dynamical system would do, but instead
of choosing a well-studied non-adiabatic benchmark system, I decided to test it
on a set of potential energy surfaces which have recently been calculated by other
members of our group. Using the EDIM methodology, C. Laursen and G. D. Billing
have constructed the two lowest diabatic potential energy surfaces for the reaction
of molecular hydrogen on a copper(100) surface. However, before we could use the
surfaces for the dynamical simulations, some additional manipulations had to be
made. Thus, except for the simple adjustments of the surfaces, to be described
below, I did not have any part in the explicit calculations of these surfaces. As
such, my insight into the details of the approximations behind the calculations of
these surfaces is very limited, and hence I will only give a short comment below.

Figure 7.1: Schematic illustration of the two coordinates for the Ho+Cu system, which are
treated fully quantum mechanically in the presented study.

The system under consideration is the dynamical process of dissociation of hy-
drogen on a metallic copper(100) surface. The calculations, to be presented, in-
clude the two lowest diabatic electronic surfaces, which are constructed from an
EDIM-potential suggested by Truong et al.[90]. The dynamics is confined to a
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two-dimensional treatment for the reactive subsystem by quantizing the vibra-
tional coordinate, x, and the translational coordinate, z, see figure 7.1. Thus, we
assume the metallic surface to be static in the sense that no degrees of freedom
for the (134) copper atoms are included, i.e. no phonon excitation. (We expect to
include this additional degree of freedom in a future study). Contributions from
H ~ H interactions (covalent bonds) are described by the well established diatom
in molecule (DIM) methodology, and the interactions of H ~ Cu are evaluated
using DIM and the embedded atom method (EAM)[91]. From this, two analytical
diabatic surfaces result, which are “empirically” parameterized by 8 parameters.
These parameters are next fixed by a non-linear least squares fit to the lowest
adiabatic total energy ab initio calculations (DFT-GGA) due to Wiesenekker et
al.[92]. A contour plot of this lowest adiabatic surface is shown in figure 7.2.
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<-315
<-343
<-372
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-
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Figure 7.2: Contour plot of the lower adiabatic surface of Hy+Cu(100), due to Wiesenekker et
al.[92].
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to Laursen and Billing.
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Figure 7.3b: Plot of the non-adiabatic
coupling term corresponding to the surfaces
shown in figure 7.3a.

All in all this lead to the diabatic potential energy surfaces shown in figure 7.3a
and figure 7.3b. It should be clear from these surfaces that they do not correlate
with respectively molecular and atomic hydrogen, but rather some combination
of the two. (The non-adiabatic coupling in figure 7.3b is constant but non-zero
in the incoming channel). This is simply a consequence of the EDIM formulation
for the surfaces. However, we would like to initiate the dynamical calculations
on the lower diabatic surface in a vibrational eigenstate of free Hy asymptotically
fare from the Cu(100) surface. Thus, it is necessary to shift to another diabatic
representation which has the “correct” asymptotic behavior.

The formally correct procedure for such a change to a new diabatic representation
was outlined in section 3.4, based on the adiabatic-diabatic transformation scheme
of Baer[37]|. To repeat, one first has to shift to the adiabatic representation, with
the corresponding two unique surfaces defined as

‘/1 = % (Wll + W22 + \/(Wn — W22)2 + 4W122> (718,)
Vvl = % (Wll + W22 - \/(W11 — W22)2 =+ 4W122> (71b)

Next, eq. (3.46) is integrated with 7y(zo, 2z9) = 0, where the new diabatic reference
configuration, (zo, 29), is taken to be a point in the incoming channel of figure 7.2,
corresponding to a system of molecular hydrogen asymptotically separated from

the copper surface.
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However, we choose, as a first ansatz, a more “quick and dirty” approach to this
change of reference configuration in the diabatic representation. We simply as-
sumed (i.e. guesses) a form of the diabatic coupling potential, Wis(z, z), and solved
eq. (7.1) for the corresponding diabatic potentials,

Wy = % <V1 +VaF \/(Vl - V)% — 4VV122> (7.2b)

The correct sign in eq. (7.2) is determined from the crossing of the new diabatic
surfaces, which in turn can the be deduced from a simple maximum-overlap criteria
of the corresponding eigenvectors which diagonalizes W to give V.

In view of the correct procedure, outlined in section 3.4, this approach is clearly
very approximate in nature, and the success of this scheme is of course entirely
based on the reliability of the assumed diabatic coupling potential. Thus, in gen-
eral results obtained from calculations on these new diabatic surfaces should be
treated with great caution. However, in the spirit of merely testing the conver-
gence and overall numerical performance of the generalized MCTDH scheme, this
approximation is very convenient as it is quickly implemented, stable and more-
over allow us to easily modify the system to introduce different quantum effects.
Thus, by changing the coupling emphasis can be put on effects like tunneling, non-
adiabatic transition and resonances formation. So, all in all this system should be
considered merely a model-system for the Ho+Cu(100) reaction, derived from the
lowest adiabatic ad initio surface.

For the diabatic coupling term, Wi5, we assumed a simple Gaussian coupling,
which is convenient as it is flexible and at the same time involves a minimum
of parameters. In stead of defining this Gaussian coupling directly in the Jacobi
coordinates, (z,z), we found it more realistic to use a set of natural collision
coordinates, discussed in detail in subsection 2.1.2. Thus, we assumed

Wia(s,v) = Wai(s,v) = Aexp [-41n2 ((s/As)* + (v/Av)?)] (7.3)

where s is the intrinsic reaction coordinate interconnecting the two minima on
either side of the saddle point (see figure 7.5), and v is the perpendicular vibrational
coordinate. In eq. (7.3) A is an amplitude parameter and (As, Av) are the full
widths at half maxima in the two directions. The reaction coordinate s, which was
explicitly defined from a standard minimum energy path scheme employed on the
lowest adiabatic surface, is shown in figure 7.4. Figure 7.5 shows the corresponding
minimum energy profile of V;(s), leading from the gas-phase to dissociation on the
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Figure 7.4: Plot of the minimum energy path (thick line) on the lower adiabatic surface.

metallic surface. Note especially the two minima on either side of the saddle point,
corresponding to respectively physisorption and chemisorption wells. The relation
between the two sets of coordinates, (z,z) and (s, v), is as follows: v denotes the
shortest distance from any point (z,z) to the reaction path, and s denotes the
distance along the reaction path to that point.

With the parameters, entering eq. (7.3), fixed as A = 3.4, As = 0.7 and Av = 0.6,
figure 7.6a shows a plot of the approximated coupling potential. The corresponding
diabatic energy surfaces, derived from eq. (7.2), is next shown in figure 7.6b. Note
that for this particular choice of W5, the resulting diabatic surfaces do actually not
cross, but rather approach each other in the saddle point. Thus, in this simple case
the correct sign in eq. (7.2) is always the lower one. This non-crossing feature of
the produced diabatic surfaces is to be considered an artifact of the approximated
coupling. It should also be noted that the square root, entering the analytical
expression for the diabatic surfaces, eq. (7.2), puts some constraints on the explicit
values of the coupling parameters, (A4, As, Av). Especially one has to be careful
that the coupling does not extent into the region of configuration space with large
values of both (z, z), since here the two adiabatic surfaces meet, i.e. |[V; — V| — 0.
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Figure 7.5: Minimum energy profile of the lowest adiabatic surface leading from the gas phase
to dissociation on the metallic surface. Note the two minima on either side of the saddle point,
corresponding to respectively physisorption and chemisorption wells.

7.2 Direct-product representation of the potentials

As was already pointed out in the previous chapter, one of the major limita-
tions of the MCTDH method, is the underlying assumption of a separable form
of the Hamiltonian operator for the total system. To exploit the central advan-
tage of the MCTDH method, it is of course necessary to avoid the computation
of multi-dimensional integrals. This can in turn only be accomplished if the full
Hamiltonian can be expressed as a linear combination of a limited set of products
of single-particle operators. This is usually fulfilled by the correlated part of the
Hamiltonian, H? ., due to the separability of the kinetic energy terms'. However,
this is in general not the case for the diabatic potential energy terms, W 4, enter-
ing eq. (6.25). Thus, to obtain this desired product representation of the potential
energy surfaces we employ an approximate scheme due to Jickle and Meyer[75, 93].
The method is largely based on the Approxzimations theorem by Schmidt[94], which
defines a procedure for the optimal approximation of a symmetric function in two
variables by a sum of functions of one variable. We first review the general multi-

IThis does of course depend on the choice of coordinates used for the representation of the
kinetic energy operator.
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25

XA

Figure 7.6a: Plot of the Gaussian coupling- Figure 7.6b: Plot of the lower and upper dia-
term, defined in eq. (7.3). batic surface.

dimensional scheme, and subsequently apply it to the two-dimensional system of
H2+Cu.

The approximation is based on the concept of density matrices, already discussed
in section 6.1. The potential is first discretized on a product grid

W (Rl R2 R R’f;]\l) = VVil,iQ,...,iN (74)

217 727 °
where {Rf , i, = 1,..., N} denote the grid points in the x’th degree of freedom.
Next, we define the symmetric potential density matrices, p*

N1 Ni—1 NN-}-I Ny
K —
pnm = E et E E et E I/I/Z'l,...,imfl,n,iﬂ+1,...,iN V[/il,...,iﬂfl,m,im+1,...,iN (75)
i1 fg—1=1ligyr1=1 in=1

and determine their orthonormal eigenvectors, V7, as well as their corresponding
eigenvalues, A7. In reference [93] they are denoted respectively the natural poten-
tials and natural weights. It is important to note that the natural weights are
assumed to be in decreasing order, i.e. A7 > A7,;. To employ the same notation
as Jickle and Meyer[75,93] we also define V*(Rf ) = [V7];,. The idea is now to

approximate the potential as

ni nnN
W (R, R, ,RY )~ -+ > Ciyin Va(RL) - VIN(RY)  (7.6)
41

in=1
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where {n,, kK = 1,..., N} are the expansion orders in the different degrees of
freedom, and where the expansion coefficients, Cj, . ;. are determined from the
expression

'aiN

—Z Zm, in Vi (RL) -+ VN(RY) (7.7)

211 ZN].

Note especially that eq. (7.6) is exact if {n,} — {N,}. In reference [93] Jickle and
Meyer proceed to define an iterative procedure where the expansion coefficients,
Ci,...iy» and the natural potentials, V7, entering eq. (7.6), are improved to give a
better product representation of the potential. They define the modified density
matrices, p°, as

Nkg—1  Ng41

~K
Pom = E , E , E , E :Cn, N PRRPIR X PR S Ciryoniin_1.m, Ihg Ly (7-8)

tr—1=1ixy1=1 in=1

where 1 < n,,m, < N,. Thus, in contrast to eq. (7.5) the upper limits of the
summations are the expansion orders, {n,}, and not the number of grid points
{N}. (Note that if {n,} — {N,} in eq. (7.8) then pf . — 0., AL). The modified
density matrices are next diagonalized,

ﬁn — gn T . én . Un (79)

=diag -

and the orthogonal matrices, U", are used to define the new potential vectors, i;,
as

<

f=vrUt (7.10)

where in = [Qf, e ,YNNN] and V* = [V{,...,V} |. Finally the new expansion
coefficients, C;, ., are constructed from eq. (7.7) with V;*(RS ) — V(RS ). The
idea is now to repeat these iterative steps (eq. (7.8), (7.9), (7.10) and (7.7)) un-
til convergence is reached, i.e. until the transformation matrices in eq. (7.10) are
sufficiently close to a unit matrix.  This scheme was used to approximate the
two-dimensional diabatic potential energy surfaces of Hy+Cu, shown in figure 7.6.
In figure 7.7 plots of the deviation for different approximations of the lower dia-
batic surface are shown. The approximations employed expansion orders, (ny,n,),
of respectively (3,4), (5,6) and (7,9). The maximum value of the corresponding
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deviations are shown to be respectively 0.5, 0.05 and 0.03. In view of the ap-
proximate nature of the diabatic coupling, c¢f. eq. (7.3), and hence also the two
diabatic potentials, I found the precision with n, = 5 and n, = 6 to be sufficient
in all the calculations. Furthermore, the numerical work in the implementation of
the generalized MCTDH scheme, to be presented in the next section, scales ex-
ponentially with the expansion orders, such that the small improvement obtained
by increasing (ng,n,) is largely outweighed by the numerical penalty. It should
also be noted that I found the optimizing scheme of Jackle and Meyer[93], out-
lined above, to be useless in the present context, the reason being an extremely
slow convergence. Actually, after 20 iterations, involving CPU demanding matrix
constructions (eq. (7.8)) and diagonalizations (eq. (7.9)), the approximation em-
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ploying (n, = 5,n, = 6) only improved by a factor of 1075. However, it is possible
that the scheme will converge faster in more dimensions.

7.3 Implementation of the MCTDH scheme

In this section we briefly outline the numerical scheme for the non-adiabatic MCTDH
study of Ho+Cu(100). The details of the multi-dimensional non-adiabatic MCTDH
scheme was presented in the previous chapter, and hence we shall only focus on the
new features, and give extensive reference to especially section 6.1. Furthermore,
many of the numerical techniques employed in the explicit implementation are the
same as for the simple one-dimensional study outlined in section 6.2.

Before we present the equations of motion for the single-particle functions we define
the single-particle operators

~ R 0?

h; = _ﬂ F) + Wi (z, 20) (7.11a)
~ h2 62

h = - |

where s = 1,2, u = mg/2, m = 2mg, and z; is fixed asymptotically fare from the
metallic surface. This is, as we shall see, a very convenient choice as it will allow us
to initiate the single-particle functions as respectively vibrational eigenfunctions of
the Hs molecule in  and a free translational particle in z. The single-surface and
two-surface correlation terms are next defined as

H' = Wul(e,2) = Wiz, 20) + Vou(e) + Vips(2) (7.12a)
H? = Was(z,2) — Wii(z, 20) + V2, (2) + V2,(2) (7.12b)
W = W12($, Z) (7120)

where V,, are absorbing potentials in the different coordinates. It is very impor-
tant to note that even though these optical potentials are strictly single-particle
operators, they cannot be included in the definitions of the single-particle opera-
tors of eq. (7.11). The reason for this is that in the derivation of the generalized
MCTDH scheme the single-particle operators, ﬂ;";, are assumed to be Hermitian.
If this is not the case, then the single-particle function will not stay orthogonal as
time evolves, i.e. eq. (6.8) and (6.9) does not hold. (In the previous chapter we re-
defined the expansion coefficients to include the absorbing properties, cf. eq. (6.39),
thereby leaving the single-particle operators Hermitian). In this study we choose a

more effective exponential form of the optical potential, as compared to the simple
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linear potential employed in the one-dimensional calculations (see eq. (6.38)). This
allowed us to use a smaller grid in the two-dimensions, which in the present context
is of great importance. The explicit form of the optical potentials read as

s
V:)pt

0 for Rmm S R S Ropt
(R) = (7.13)

—1AN exp [—2}3’;;_9”71;:::’”} for Ry < R < Rppaq

where s = 1,2, R = x,z and N is a normalization constant found numerically to be
13.22. The absorbing properties of this potential has been investigated thoroughly
by Vibék and Balint-Kurti, and in reference [87] they have tabulated optimized
values for the parameter A and the range of definition, AR,,: = R0 — Ry, for
a given energy domain. As a last comment we also note that the correlating po-
tentials of eq. (7.12) are not the pure diabatic potentials due to the zero-order
term Wiy (x, z0). This actually means that the two-particle potentials have a more
smooth topological behavior, which in turn results in a better product representa-
tion when employing the scheme outlined in the previous section.

The working equations for a two-dimensional two-surface system are readily derived
from eq. (6.19b) and eq. (6.25). Below we just give the equations of motion for the
single-particle functions in the x coordinate, and the corresponding equations in
the other coordinate are simply obtained by interchanging z and z. The equations
for the time-dependent expansions coefficients (eq. (6.19b)) read as

MS S
ihAL, =) Z<¢ 3 H? () |93) A2,
Jo=1j.=1

e e (7.14)
+ZZ<¢ LW g% )95 ) A%

=1j.=1

where (s,s') = (1,2) or (2,1). Using eq. (6.25) it is easy to show that the equations
of motion for the single-particle functions read as

»
ihi|gs ) = hi|s) +Z " {|ézw>—2<¢lm|¢kz>|¢lm>} (7.15)

kz=1 lz=1
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where we have defined the correlated single-particle functions

MS

|‘52m> = Z( Vkaio|Dia) + Z kaw|¢5 (7.16)

Jz=1
and the mean-field operators

MS

Z S H (7.17a)

i,=1

e e
Z ZAkwkz A (g1 [H|62) (7.17h)

k=1j.=1

(1) isks

(H*) 5.

Mg Mg

Z Z AR A (B0, W |95 (7.17¢)

k.=1j.=

W) kit

Using the simple relation (see eq. (7.14))

M3
<¢ZD |§513cm> =ik Z AZisz;mlcz (7.18)

k.=1

eq. (7.15) can also be recast into the form

Zh‘fbfﬁ = )+ Z Viska {ka - th Z Foks lmkz|¢l >} (7.19)

ke=1 lz=1k,=1

In this form the analogy to the working equations previously used by Fand and
Guo[79] is immediately apparent. For the two-dimensional MCTDH treatment of
the photodissociation of ICN, they employed an expression equivalent to eq. (7.19)
with ﬂ; = (0. Even though the difference might seem marginal, it is fare from
trivial. The present formulation, with fli # 0, can be interpreted as a more gen-
eral interaction representation of the equations due to Fang and Guo. Since the
computation of the mean-fields of eq. (7.17) requires a much greater computational
effort in comparison to the simple calculation of the single-particle operators act-
ing on the single-particle functions, a splitting of the Hamiltonian, according to
eq. (7.19), should result in a decrease in the computational effort. For a simple
two-dimensional single-surface calculation this has been confirmed by Jackle and
Meyer[75]. Furthermore, as noted above, the separation of a zero-order term from
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the potential energy functions generally lead to smoother surfaces, which in turn
result in fewer terms in the product representations. This too will speed up the
computation of the mean-field operators. Thus, for instance when computing the
mean-field operator entering eq. (7.17b),

(fr, |HY4}) ZZ i Vi (01, Vi, |63,

tp=1i,=1

+ Vot ()05, + (D | Vope(2)85.)

the natural potentials, {V;_(x), Vi (2)}, are obtained from the product representa-
tion of Wii(x, z) — Whi(x, o), cf. eq. (7.6), leading to smaller expansion orders,
(ng,n,), than for the corresponding representation of Wiy (z, z). The action of T,

entering the single-particle operators, is easily evaluated using a one-dimensional
FFT algorithm.

As in the previous chapter we employ a particle-in-a-box DVR scheme in both
coordinates. Using the uniform transformations, defined in subsection 2.2.5, the
vibrational eigenfunctions of h are computed, and they serve as the initial func-
tional form of the single-particle functions {¢; (z,2 = 0) i, = 1, M;}. As a prelude
for the initialization of the translational single-particle functions in z we first define
the functions

(7.20)

{(z —20)*V1(2,t =0) a=0,1,...,M; -1} (7.21)

where W¥y(z,t = 0) is the focusing Gaussian wave function defined in eq. (6.29a).
These functions are then orthogonalized by the well-known Gram-Schmidt or-
thonormalization scheme and properly normalized. It should be noted that the
prefactors (z — zp)®, as oppose to just z%, are used in order to obtain a numerically
stable Gram-Schmidt orthonormalization for large values of o, i.e. M7 > 5. The
precision of the Gram-Schmidt scheme can further be improved by iteratively re-
peating the orthonormalization. For M} = 7, 10 iterations was enough the ensure
a precision of 107°. All in all this defines the orthogonal single-particle functions
{#% (z,t = 0) i, = 1, M$} with the built in feature that only ¢{(z,t = 0) is initially
populated, i.e.

Azm,zz (t = 0) — (szm,n(szz,las 1 (722)

where n defines the initial vibrational mode of the Hy molecule. From the definition
of the density matrices in eq. (7.17a) it should be clear that the initial condition
of eq. (7.22) lead to singularities. These inherited initial value singularities are ex-
actly the same ones that cost us tremendous numerical problems in the Gaussian
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MCTDH scheme, presented in section 5.2. However in contrast to those singular-
ities, the present singularities can be removed by a simple regularization scheme.
We defined the regularized “pseudo-inverse” of the density matrix as

(197" = () + e;) - (7.23)

where € is a small number, typically in the order of 107¢. Other more sophisticated
regularization schemes can be employed (see e.g. equation (20) in reference [74]),
but I found the simple procedure of eq. (7.23) to work well in the present study.
Finally, the temporal propagation of the expansion coefficients in eq. (7.14) and
the single-particle functions in eq. (7.15) is carried out by a variable-order (up to
11) predictor-corrector scheme.

7.4 Implementation of the split-operator scheme

The present implementation of the split-operator scheme, initially presented in
subsection 4.1.2, goes along the same lines as outlined in subsection 6.2.2. Thus, we
employ the split-operator defined in eq. (6.40), with the modifications T = T, +T,
and

_ |[Whi(w, 2) + Vopr (@) + Vope(2) Wis(z, 2)

Vi 2) = Wis(z, 2) Vaa(o) + Vop(a) + Vo(z)| (729
where V,,; are the optical potentials defined in eq. (7.13). The action of the kinetic
energy operator is evaluated by a two-dimensional FFT algorithm. The total wave
function is initiated on the direct-product grid as a vibrational eigenfunction of
the Hy molecule in z, times a Gaussian wave function in z, i.e. a product of eigen-
functions for the single-particle operators defined in eq. (7.11). This corresponds
to the initial condition of a free hydrogen molecule incident upon a metallic copper
surface.

7.5 Numerical results

To extract informations from the two different types of calculations, outlined above,
we evaluate the flux of the two-dimensional wave functions. However, unlike in
the simple one-dimensional study, presented in the previous chapter, it is only
physically meaningful to calculate the momentum-resolved reaction probabilities
in the incoming arrangement channel. Due to the cut-off of the diabatic potentials
for relatively small values of z (c¢f. figure 7.6), we can only define well behaved
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asymptotic states in the z direction, corresponding to free molecular hydrogen
in some vibrational eigenstate incident upon the metallic copper surface. (The
outgoing channel in z on the upper electronic surface, corresponding to free atomic
H incident upon Cu(100), is closed for all the energy domains investigated in
this study). Thus, in the outgoing reactive channels in z, describing dissociated
hydrogen on copper, we compute the total outgoing flux of the wave function over
a dividing line at x*, placed immediately after the reaction barrier, see figure 7.5.
Hence we cannot distinguish between chemisorbed Hs on Cu(100) and dissociated
hydrogen on copper. From the discussion in section 1.1 it follows that the total
reaction probability can be calculated as

tmaz Zmaz
P2(ko) = / dt / dz i, [T (2", 2, 1)] (7.25)
0 Zmin

where j, [‘Ilfm (z*, 2, t)] is the quantum flux in the x direction on surface s = 1, 2 of
the total wave function at the point (z*, z), see definition in eq. (1.9). In the incom-
ing arrangement channel in z we calculate the momentum-resolved reflection prob-
abilities in much the same way as outline in the introduction of subsection 6.2.3.
However, the following modifications are made primarily because of the additional
channel-index, n, describing the vibrational mode of the Hy molecule. Eq. (6.43)
now read as

hkno—)n
m

Fno—m(k’ t) = |\Iln0—>n (k’ t) |2 (726)

where ko, = 1/k? — 2m(E, — E,;)/h? and ny denotes the initial vibrational
quantum number. Since the outgoing arrangement channel in z on the upper
surface is closed for all the energy domains investigated in this study, the surface
index 1 and arrangement index z are implicit in eq. (7.26) and throughout the rest
of this discussion. As a prelude for the calculation of ¥, ,,(k,t), we project the
total wave function onto the vibrational eigenfunctions of Hy at the dividing line
through z*, i.e.

Uy (25 1) = / Az (2, 0) T, (3, 2, 1) (7.27)

Tmin

where ¢, (x,0) in the MCTDH formulation are the initial single-particle functions
in the z coordinate. As in eq. (6.47) we next perform the time/energy Fourier
transform of these functions,

1 tmaz
V(') = = /O dt exp [iEt /R Tyy (25 1) (7.28)
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where £ = E, + % Finally, using the equivalent of eq. (6.48), the momentum-
resolved reflection probabilities read as

thknO_)n|\Iln0—>n(z*> E) ‘2

P, n(k) = 7.29
o-n (k) Azym? exp [—2Az02(k - ko)ﬂ (7.29)
and the total probabilities are given by
tot R? fmas 2 2
PnZ—)n(kO) = komz A dk k knO—WL“IJTLO—)n (2*7 E)‘ (730)

In table 7.1 we have listed the numerical values of the parameters fixed in the
generalized MCTDH and split-operator calculations. Like in the previous chapter
all the numbers and results presented in this chapter are reported in molecular
units?. Throughout the rest of this chapter we will denote the molecular energy
unit (100kJ/mol ~ 1eV) by e. As noted in the table the numerical values of some
of the parameters are actually dependent on the initial choice of the energy, i.e. kg
and ng, but the range of values are nevertheless typical.

Let us start by discussing some of the features and results obtained for the dynam-
ical system of Hy+Cu(100) itself. Figure 7.8 shows a plot of the fully converted
reflection probability obtained from eq. (7.29) with n = ng = 1, i.e. the vibra-
tional ground state. The plot shows that for k& values below 15A 1, corresponding
to approximately 0.2¢, the hydrogen molecule bounces back from the copper sur-
face, without any vibrational excitation. This is in good agreement with the hight
of the reaction barrier of approximately 0.4e, see figure 7.5, and the fact that
Ey — By = 0.77¢ — 0.26¢ = 0.51e >> 0.2¢ as measured from the bottom of the
lower surface at z;. However, it is a bit disappointing to observe that for energies
just above the barrier (k ~ 20A~1) the system reacts 100%, corresponding to all
of the hydrogen adsorbing on the copper surface. This is not observed experimen-
tally, where the dissociation probability saturates at a value less than 1. This, we
think, is the indication of a true non-adiabatic process, and the fact that we do
not observe this saturation in the present non-adiabatic study is most probably
because of a poor assumption for the form of the non-diabatic coupling surface,
eq. (7.3). This is confirmed by the fact that for energies above the barrier, we
found that only about 10% of the wave packet resides on the upper surface for
approximately 20 F's (see figure 7.12 later), which on a time scale of 300 F's, for the
direct reaction, is very little. (See also figure 7.18 at the end if this section). Thus,

2The molecular units of energy, mass, length and time are respectively 100kJ/mol ~ 1eV,
lamu, 1A and 10~'%s = 10 Fs. In these units /4 has the value 0.06350781278 (see appendix A in
reference [89] for the numerical values of other physical constants).
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Table 7.1: Numerical values of the parameters fixed in the calculations.

reported in molecular units (see footnote 2 on page 119).

The numbers are

Parameters MCTDH"® Common Split!
Grids:

Trnaz(A) 4.0

N,? 64

Zmin(A) -0.2

Zmaz(A) 10.0

N, 128

Propagation:

r*(A) 2.0

2*(A)P 8.0

At(10714g)2 0.005 0.002
Precision 10~6¢ —d
Gaussian wavepacket:®

20(A) 8.0

Ztoc(A) 1.2

Azy(A) 0.5

Coupling potential:f

A(100kJ /mol) 3.4

As(A) 0.7

Av(A) 0.6

Optical potentials:8

Topt(A) 2.2

A, (100kJ/mol) 0.5

Zopt(R) 8.2

V,(100kJ /mol) 0.5%

2This parameter is actually dependent on the initial energy of the system, but the
listed value was typical for most calculations.

b The time sampling of the wave function along this line (see eq. (7.27) and (7.28)) was

not started before the wavepacket was moving out of the reaction region.
¢ Input-parameter to the variable order predictor-corrector routine.

dThe Split operator method does not offer any control over the precision in the time-

propagation.
®See eq. (6.29a)
f See eq. (7.3)
8See eq. (7.13)

h Generalized MCTDH as described in section 7.3.

I Split-operator scheme, employing the FFT algorithm, as described in section 7.4.
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Figure 7.8: Plot of the fully converted reflection probability P7,, (k).

it seems that the non-adiabatic coupling in the present approximated formulation
has been underestimated.

However, a very interesting feature of figure 7.8 are the structures around k =
20A~1, indicating the formation of quasi-bound resonance states, corresponding
to physisorption of Hs in the well just before the reaction barrier, see figure 7.5.
This is confirmed by plots of the probabilities density for the two-dimensional
wave function for times larger than 200 F's, see figure 7.16 and 7.17 at the end of
this section. The characterization and study of such resonance states is exactly
the topic of the next part of this thesis, but for now we shall just think of them
as quasi-bound states in which the system is trapped for a considerable amount
of time. As such, the formation of resonances in the present dynamical study
constitutes a tedious numerical problem because the propagation times had to be
considerably prolonged. Hence, in order to obtain the fully converted probabilities
shown in figure 7.8, the calculations around & = 20A~! were propagated to 750 Fs,
1.e. the computational times were more than doubled.
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Figure 7.9: Plot of the fully converted reflection probability P§ ,,(k).

Figure 7.9 shows a plot of the fully converted reflection probability obtained from
eq. (7.29) with n = ng = 2, i.e. the first excited vibrational state. The plot shows
almost complete dissociation for all values of k, which is in agreement with the
available energy (> E; — E; = 0.51¢) and the hight of the barrier (= 0.4¢). The
structures for low k are possibly due to the formation for resonances, but this is
difficult to confirm visually due to the very low amplitudes.

Now, let us return the main topic of this chapter namely the test of the gener-
alized MCTDH scheme outlined in section 7.3. In figure 7.10 the convergence of
P 1 (k) for 6 MCTDH calculations, employing respectively (2,3,4,5,6,7) single-
particle functions in both coordinates, is shown against the “exact” results using
the split-operator scheme. The different probability curves are all obtained from
a single calculation with ky = 20A~!, such that only results in the neighborhood
of this value should be considered reliable. It should also be noted that the prop-
agation times were fixed to 300 F's in all the calculations, which explains for the
missing structures when compared to figure 7.8. Thus, the calculations only show
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Figure 7.10: Plot of the convergence of Py, (k) for 6 MCTDH calculations, employing re-
spectively (2,3,4,5,6,7) single-particle functions in both coordinates, shown against the “exact”
results using the split-operator scheme.

the direct dissociation probabilities. As will become clear later, this was done to
significantly reduce the computational times. The curves show a clear convergence
to the “exact” result as expected. The MCTDH calculations, employing less than
6 single-particle functions in the two coordinates, show too high reactivity, but
with M, = M, = 6 the right behavior of the probability curve is observed, and
with 7 functions the probability is almost converted.

Table 7.2 shows a list of the total probabilities in the different arrangement chan-
nels, for the calculations depicted in figure 7.10. These number were obtained using
eq. (7.25) and (7.30). The table also lists the total CPU times, times pr. propa-
gation step and the performance of the FORTRAN code in megaflops. The same
convergence is observed in this table for the total reaction probabilities, as was seen
for the energy-resolved probabilities in figure 7.10. It is however disappointing to
see that at no level of approximation does the MCTDH scheme offer a compu-
tational advantage over the direct split-operator scheme — at least not in terms
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of CPU time. This, we think this is primarily due to the superiority of the sim-
ple two-dimensional FFT algorithm over the relative complexity of the MCTDH
scheme employing a slow predictor-corrector propagation. However, as will be ar-
gues below, it is very important to emphasize that the MCTDH calculations could
have been significantly improved by allowing for less single-particle functions on
the upper surface. Even more speed-up would result from a flexible implementa-
tion of the MCTDH scheme where single-particle functions were added as needed
during the time propagation itself. Finally it should be noted that the MCTDH
code still needs to be further optimized for the vector computer. The table also
shows an exponential growth in the amount of computational work, as the number
of employed single-particle functions are increased. This exponential scaling of
the MCTDH scheme in the number of single-particle functions has been predicted
by Manthe et al.[74]. In this reference they also argue that the scheme should
feature a favorable semi-linear scaling in the number of degrees of freedom, which
we can however not see any clear evidence for. Only in the very approximate
limit, employing less that 4 single-particle functions, does the MCTDH scale bet-
ter than the split-operator scheme, when going from one to two dimensions (cf.
table 6.2 and 6.3). Considering the reservations concerning the insufficient imple-
mentation of the MCTDH code, it is difficult to make any clearcut conclusions
based on the CPU times listed in table 7.2, however is seems inevitable to say that
the present MCTDH implementation does not seem to be the method of choice for
a system like the one studies here.

In figure 7.10 and table 7.2 we examined the convergence of the MCTDH scheme
by a direct comparison to the exact solution of the split-operator method. This is of
course the obvious way to examine the convergence, but the MCTDH actually offers
another type of “self control” which does not refer to other calculations, and as such
can be very useful when exact results cannot be produced. As discussed in detail
in section 6.1, one can define a unique set of natural single-particle functions by
diagonalizing the density matrices (see eq. (7.17a)), and the resulting eigenvalues,
called natural weights, are a direct measure of the population of the corresponding
natural single-particle functions. In figure 7.11 we have shown a plot of log [A] (¢)]
where Aj (t) is the natural weight of single-particle function i, on the lower surface
at time t. The plot clearly shows that the contribution from the added single-
particle functions gradually decreases, and it is interesting to see that at no time
does single-particle function number 7 contribute to the total wave function by
more than a factor of one thousandth. The plot also gives a very interesting
picture of when the different single-particle functions actually contribute during the
dynamical event, and it is clear that this is mainly when the wave packet crosses the
barrier after 120 F's. This characteristic feature could be exploited in the numerical
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Table 7.2: Convergence of the total reaction probabilities in the different channels of Ho+Cu,
as a function of the number of employed single-particle functions in the MCTDH scheme. All the
tabulated calculations were initiated in the vibrational ground state of the hydrogen molecule,
and with a kinetic energy corresponding to ko = 20(1&*1). The calculations were all propagated
to 300 F's, at which time the direct scattering was over. It should also be noted that the MCTDH
code has not yet been fully optimized, and as such the reported CPU times for these calculations
are temporary.

M?*  Plko)® Pl(ko) PZ2(ko) Piot(ko)® Po(ko)? time® time/step! MFLOPS

2 17.31  51.09 0.22 68.62  31.38 1168 0.19 220
3 1412  84.62 0.41 99.15 0.85 2181 0.36 281
4 3.17 93.33 0.47 96.97 3.03 5863 0.98 309
3 4.68 91.22 0.46 96.36 3.64 10482 1.74 326
6 8.77 88.39 0.45 97.61 2.39 17105 2.85 349
7 11.04  82.63 0.45 94.12 0.88 26253 4.37 379
split® 10.92  82.24 0.43 93.59 6.41 1116 0.08 323

& Number of single-particle functions in both coordinates, i.e. M = M, = M,.

b P2 (ko) was constantly found to be zero.

¢ Pyot (ko) = P (ko) + Py (ko) + P2 (ko)

4 Py(ko) = 100 — Pyo¢(ko), 4.e. a measure of physisorption.

¢ Total CPU time in seconds.

f CPU time pr. propagation step.

8 Million floating point operations pr. second on a single CPU of a Cray C92 (peak performance
is approximately 900 MFLOP).

hResults obtained from the split-operator scheme.

implementation, by gradually switching on the single-particle functions as needed
in the calculation. We expect that this could give a significant speed-up of the
MCTDH scheme. Note also that after the crossing of the barrier, the sum-curve
dramatically decreases to a value below zero, which is due to the absorption of the
wave packet by the optical potential in the exit channel. It is equally evident from
this figure why less than 6 single-particle functions give so poor results. Finally, we
note that the minimum value of Aj (t) is introduced by the regularization scheme
defined in eq. (7.23).

In figure 7.12 we have shown a logarithmic plot of the natural weights for the single-
particle function in the z coordinate on the upper surface. This plot shows the same
characteristic time-evolution of the contributions from the different single-particle
functions as depicted in figure 7.11. However, two features are unique for this plot.
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Figure 7.11: Logarithmic plot of the natural weights for the single-particle function in the z
coordinate on the lower surface.

First of all we observe that very little (maximum 10%) of the wave packet actually
populates the upper diabatic surface. As mentioned above, this can explain for
the saturation of the reaction probability at unity, which in turn is an indication
of an underestimated non-adiabatic coupling due to a poor approximation of Wi,
through eq. (7.3). The other interesting observation that can be made from this
plot is that the contributions from the 3-4 lowest curves are virtually zero, which
of course suggests that we could have done with only 3 single-particle functions in
this degree of freedom. Thus, this could also be exploited in the code leading to
yet another significant reductions of the computational efforts.

On the last few pages of this chapter we have shown a series of “animations” of the
dynamical reaction of Hy+Cu(100). The series of plots, figure 7.13 to figure 7.16,
show the probability densities of the lower wave function as a function of time
obtained from MCTDH calculations employing respectively 2, 3, 5 and 7 single-
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Figure 7.12: Logarithmic plot of the natural weights for the single-particle function in the z
coordinate on the upper surface.

particle functions in the two coordinates. These plots should be compared to
figure 7.17 showing the corresponding results for the split-operator method. In
all the depicted calculations the system was initiated in the vibrational ground
state and with k; = 20A~1. The plots show a clear convergence to the exact wave
function as the number of single-particle functions are increased. Note also the
formation of a vibrationally excited quasi-bound resonance state at t = 250Fs and
t = 300Fs. This is especially clear in figure 7.16 and 7.17. Finally figure 7.18 shows
plots of the probability densities on the upper diabatic surface, and it seems evident
from these figures that in the present approximate formulation of the potentials
the non-adiabatic transition is very limited.
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7.6 Conclusion

First of all we stress that the potential energy surfaces, on which the work presented
in this chapter was based, are by construction very approximate. Consequently we
have refrained from drawing too drastic conclusions on the dynamical system of
molecular hydrogen on a copper (100) surface, and instead focused on the imple-
mentation and performance of the generalized MCTDH scheme. A clear indication
of the insufficiency of the employed diabatic surfaces is the observation that for
energies above the reaction barrier the collision leads to complete dissociation of
H,, which suggests that the non-adiabatic coupling in the present formulation is
underestimated. However, as one very interesting feature of the studies system, we
found evidence for the formation of resonance states, corresponding to physisorp-
tion of Hy on the Cu(100) surface. In future work we plan to improve the surfaces
by employing the correct adiabatic-diabatic transformation scheme, outlined in
section 3.4, and furthermore include phonon excitation in the metallic surface in
order to get a more realistic description of Cu(100).

The main objective of the work presented in this chapter was to study the two-
dimensional two-surface implementation of the generalized MCTDH scheme, de-
rived in the previous chapter. As fare as this objective is concerned the project was
a success, in the sense that we have demonstrated that the generalized MCTDH
scheme does indeed converge to the “exact” solution as more and more single-
particle functions are employed in the calculations. We also emphasize that the
numerical implementation was found to be fairly simple and stable, suggesting
that the extension to more degrees of freedom will be equally simple. However,
we cannot hide the disappointment in discovering that the MCTDH scheme was
actually much slower than the direct solution employing the split-operator scheme.
We have pointed out several obvious way to significantly improve the numerical
performance of the MCTDH code, basically related to a more effective and flexible
implementation of a dynamical truncated basis-set, but it is probably unrealistic to
think that this will improve the MCTDH scheme to the extend that it can actually
outperform the direct methods in the exact limit. Thus, at best we can conclude
that the generalized MCTDH scheme, in this work, seems most advantageously
geared for the approximate limit of description, event though it does indeed offer
the exact solution as well. If we however, for the sake of the argument, ignore these
obvious insufficiencies of the presented implementation of the MCTDH scheme, we
seem to be in the same situations as in the conclusion of the previous chapter
where we had to resort to the frustrating phrase “it is possible that going to larger
dimensionality will change this picture”.
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Figure 7.13: Plot of probability density on the lower surface for a MCTDH calculation with
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Figure 7.18: Plot of the probability density on the upper surface for an “exact” calculation
with ko = 20.
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In this part of the thesis we have formulated a general non-adiabatic extension of
the MCTDH method and successfully applied it to respectively a one-dimensional
model system and the two-dimensional system of Ho+Cu(100). Both of the numer-
ical studies show that the generalized MCTDH scheme does indeed produce the
exact solutions in the limit of many single-particle functions, as was expected from
the formulation. However, the two studies also seem to reveal that the MCTDH
method is most advantageously geared for the approximate limit of description, as
compared to more direct methods like the split-operator approach. If this is in fact
true, it is quite interesting to note that in the literature, the MCTDH method is
generally referred to as an exact quantum approach. Whereas this is in principle
correct, the best use of the method appears to be in the approximate limit, which,
strictly speaking, puts this approach in another type of category. Many recent pub-
lications have applied the MCTDH scheme on multi-dimensional systems|[59, 78],
but very few (if any) report a comparison of the CPU times to the exact methods,
often because the systems under consideration are so big (e.g. five-dimensional)
that such direct calculations are simply not possible. In these cases the obvious
question would naturally be, how accurate are the MCTDH calculations then 7

In the studies presented in this part of the thesis we have applied the generalized
MCTDH scheme to fairly simple systems, at least in terms of dimensionality. The
reason for this was of course that we wanted to test the performance on this ap-
proach against a direct “exact” method. However, one could surely argue that the
systems studied so fare might not be large and complex enough to really exploit
the advantages of the MCTDH approach. One of the distinct advantages of the
MCTDH scheme is exactly connected to the large flexibility of the scheme to deal
with complicated situations encountered in complex collision experiments. The
scheme allows for the employed time-dependent basis-sets to be adjusted and fine
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tuned for exactly the numerical problem at hand. This we did not exploit to a full
extent in the work presented here. The other distinct advantage of the MCTDH
scheme is related to the fact that one avoids to compute multi-dimensional matrix
elements, which in turn should give a favorable scaling of the numerical implemen-
tation. With only two dimensions it is reasonable to say that this advantageous
feature of the MCTDH scheme has also not been exploited fully.

Thus, all in all it seems plausible that the somewhat frustrating picture outlined in
this work will change as we move on to larger dimensionality. For the exact same
reason I am presently working on the implementation of the generalized MCTDH
scheme to a three-dimensional system. As was clearly demonstrated in the previ-
ous chapter the working equations are easily obtained from the general expressions
derived in chapter 6, cf. eq. (6.19b)—(7.14) and eq. (6.25)—(7.15). The difficult
part is rather related to the proper choice of the numerical representation (i.e.
FBR) of the Hamiltonian, which in turn is closely related to the choice of coordi-
nate representation for the reactive system. This problem was discussed in detail
in section 2.1, and we pointed put the distinct advantage of the hyperspherical co-
ordinates, primarily due to the evenhanded way the different arrangement channels
are described in this coordinate system. Thus, my choose of coordinates for this
three-dimensional study are a slightly modified version of the Johnson coordinates
defined in subsection 2.1.3. In these hyperspherical coordinates the Hamiltonian
operator for a general three particle system, A+B+C, with zero total angular
momentum, read as[64]
2
H=H'+V = —2—h2 (
Hp
where the hyper-angles are confined to the intervals 0 < § < 7/2 and 0 < ¢ < 27.
It should be clear from this expression that 8 display singularities at both extremes
of the domain of definition. Hence, I have recently worked on the construction of a
new effective ad hoc basis-set in this coordinate, which by construction removes the
singularities. Using a factorization method of Infeld and Hull[95] on the a differ-
ential equation first studied by Péschl and Teller[96] I have been able to construct

(92 1 82 1 1
062 = 1
90 50 057  sn20 16) +V(g,0,p)  (81)

numerical exact representations of the #-eigenfunctions of HO. Using this basis-set
I hope in the near future to be able to produce some new and exciting results for
a non-adiabatic three-dimensional application of the generalized MCTDH scheme.

As a closing remark for this part of the thesis we note that in both of the presented
numerical studies we saw clear evidence of the formation of resonances states,
leading to significantly prolonged propagation times. Several different methods
have been proposed in the literature to deal with this problem in time-dependent
dynamics. For instance Neuhauser and coworkers[97] have studied a scheme where
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the description of collisions affected by resonances is split into a direct scattering
event and a contribution coming solely from the formation of the resonances. In
short they, stop the propagation of the wave function at some time when the direct
scattering is believed to be over, and the wave function at this time-step is next
used as a guided input for a subsequent characterization of the resonances using
the Lanczos recursion, mentioned in subsection 4.1.4, or the filter diagonalization
method[98,99], also developed by Neuhauser. However, it is the point of view of
this thesis that the time-independent so-called complex coordinate methods are
better suited for the pure description of molecular resonances. This is exactly the
topic of the next part of this thesis.
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Part 111

Resonances by complex methods






Introduction

In this last part of the thesis I will discuss and present two studies of molecular res-
onances by complex methods. This work is based on two publications[3, 4] (see A.3
and A.4 in part IV for the abstracts) and large parts of especially chapter 10 and 11
are reproductions of these articles. However, additional figures and explanations
will be found in these chapters, and extensive reference will be made to the first
introductory part of this thesis. To the extend possible, the two studies are linked
together, and consequently the observant reader will find that certain sections have
been shuffled around to give a more coherent presentation. It should also be noted
that the order in which the work is presented is not chronological. This is done
because the first project by fare offers the best introduction in terms of simplicity
of the model and formulation.

Throughout the rest of this chapter we shall try to answer some of the fundamental
questions concerning characteristics, nature and existence of molecular resonances
in quantum dynamics, which in turn leads up to two studies in chapter 10 and 11.
Section 9.1 gives a brief description of resonances, and in section 9.2 we will give
a motivation for the study of resonances. The foundation for the discussions in
these two sections was given in section 1.2 in the first part of this thesis. Next
section 9.3 explains the underlying quantum mechanisms leading to the formation
of resonances, and finally section 9.3 mentions some of the most important methods
used to locate resonances, and focus on the two complex methods which will also
be explained in greater details in the subsequent chapters.
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9.1 What are resonances and how are they
characterized?

When colliding particles temporarily stick together to form complexes we have
what is known as a “resonance state” in the time-independent picture!. This is
a state of the system that has enough energy to break up into smaller parts as
e.g. in indirect photodissociation. As such a resonance state can be viewed as
“something” in between a bound state, where the particles stay together, and
a continuum state with free particles. Thus, as a natural prelude to the explicit
definition of a resonance state we shall first have to review the latter two situations.

As motivated in the introduction of chapter 1, and subsequently exemplified in
section 1.2, quantum mechanics is all about solving the Schrodinger equation sub-
ject to boundary conditions to ensure that certain physical requirements are met.
If we, for the sake of simplicity, consider a simple elastic collision, we can follow
along the same lines as given in section 1.2, and write the asymptotic form of the
partial wave function as (see eq. (1.29b))
lim 5% (kr) oc Sy(k)e™ — e " (9.1)
T—00
where k> = 2uFE/h*> > 0 and the ratio between the incoming and outgoing com-
ponents of the continuum wave function is given by the celebrated S-matrix,
S¢(k) = €. When dealing with bound state problems the physics requires that
the solution is square integrable, i.e. the solutions are in the Hermitian domain
of the Hamiltonian, and the energy is real negative. Hence, we can write the
boundary condition as
lim b (kr) oc e ™" (9.2)
T—00
where £ > 0. Comparing this expression to the general boundary condition given
in eq. (9.1), it is easy to see that stationary states correspond to solutions to
a scattering problem with a negative imaginary wave number, £k = —ik, at a
node of the S-matrix, S(k) = 0. Resonances, on the other hand, are on physical
grounds defined as wave functions with pure outgoing (Siegert state[101]) boundary
conditions with a complex wave number

lim ) (kr) oc €' = e gk1” (9.3)
T—00

1Schinke[100] argues in his book “Photodissociation Dynamics” that strictly speaking the term
resonance is reserved for the time-independent formulation. In the time-dependent approach
“resonance” states are characterized by recurrences (i.e. damped periodic oscillations) in the
autocorrelation function. However, in this thesis we will not make this distinction.
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where kg > 0 and Ky > 0, i.e. Kk = kg — iKk,. If we again compare this expression
to eq. (9.1), we see that resonance states have S,(—k) = 0 for complex k. Noting
the simple relation? Sy(k) = S;(—k)™", we arrive at the well known characteris-
tics that resonance states are associated with poles of the S-matrix for complex
values of the energy. In the next section we shall discuss this fundamental fea-
ture in more detail and elaborate on the consequences in terms of calculations
and measurements. The explanation of the divergence property of the resonance
wave function in eq. (9.3), (|9;¢(r — 00)|> = €*1”, k; > 0), and a simple physical
interpretation of the complex energy, emerge if we consider a stationary solution
to the time-dependent Schrodinger equation. If 9(r) is a solution to the time-
independent Schrodinger equation, satisfying eq. (9.3), the solution to the time-
dependent problem reads as U}¢*(r,t) = ¢;*°(r) exp|—iEt/h], where the energy is
a complex number £ = E,., — i['/2. Consequently the probability density of the
resonance state is not time-independent in contrast to a bound state, but rather it
leaks in time as

(e (r, )7 = [0 (r)|” exp[—i(E — E*)t/A] (9.4a)
|97 ()| exp[ Tt/ 7] (9.4b)

and T' = 2k¢k1h?/p > 0 can now be identified as the rate constant or width of the
exponentially decaying state. Noting that the lifetime is 7 = A/T', we conclude
that the negative imaginary energy of a resonance is associated to the inverse
lifetime, and the real part of the energy, F,., = (k3 — k?)h?/(2u), is referred to as
the position of the resonance. As noted by Moiseyev[103] the divergent property
of eq. (9.3) is simply a consequence of the conservation law of the number of
particles in coordinate and time space (i.e. |U5¢*(r — 0o, t — 00)|” should remain
constant). Using this simple but nonetheless fundamental argument, it furthermore
follow from eq. (9.4b) that the broader or shorter-lived a resonance is (i.e. for
increasing value of " in eq. (9.4b)), the more divergent is the asymptotic part of
the wave function, ¥;°*(r). We especially note that sharp (or long-lived) resonances
have a very small asymptotic amplitude as compared to very broad resonances or
continuum states. This is an important feature of quasi-bound states that we will
refer to several times in the subsequent chapters.

Actually, decaying states, as defined in eq. (9.4b), were already introduced into
quantum mechanics in 1928 by Gamow[104], and hence they are sometimes referred
to as Gamow states in the literature. As a closing remark to this section I would like
to quote Landau[105]: “Although decaying states may appear as just an academic

2This relation is easily shown by substituting ¥ — —k in eq. (9.1) and recast it into a form
comparable to the former[102].
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exercise, they are probably more realistic than conventional quantum mechanics;
if we wait long enough many (if not all) particles, nuclei and atoms do decay in
time and thus must be described as a type of Gamow (ed. resonance) state.”

9.2 Why are resonances so important to study?

The short answer to the question raised in the title of this section was already
given in the previous part of this thesis: Resonances manifest itself as complicated
structures in the reaction probabilities, and can in the time-dependent descrip-
tion of dynamics result in considerably prolonged propagation times. We actually
saw clear examples of this in both the numerical studies presented in respectively
chapter 6 and 7. Thus, as such it seems obvious that the ability to predict the exact
location of resonances is of great importance to theoreticians in general. However,
resonances are of course more then just an annoying complicating feature of a given
dynamical system, it represents an interesting physical phenomenon, which often
itself is enough reason to study such resonances.

To give a more comprehensive and elaborate answer to this question, however, we
shall in this section show how the formal definition of a resonances state, given in
the previous section, can easily be shown to lead to these complicating features.
To do this, we start by recasting eq. (9.1) into a form which is more convenient for
the discussion to follow

lim 95 (kr) oc Se(E)Y? (So(E)Y2e™ — Sy(E)1/2e ) (9.5)
T—00

where £ = h;l’f. As mentioned above a resonance state is defined as a pure
outgoing Siegert state (see eq. (9.3)) and thus for Ey = E,..; — iI'/2 it follows that

S¢(Eg)~? = 0. Using Taylor series, we can next expand Sy(E)~*/2 to first order
around its zero

S(E) \? ~ (E - E,)S,"*(Ey) (9.6a)
SUE)? ~ (E—E)S, ™ (E) (9.6b)
. —1/2
where S[I/Q(EO) = dsé—E|E:E0. To obtain eq. (9.6b) we have made used of the

fact that the S-matrix is unitary, and further assumed E to be real. It then follows
that in the neighborhood of a resonance the S-matrix approximately reads as

_ SUB)?§,Y*(Ey) B — Epey —iT)/2
Sy(E)~1/2 S;1/2(E0) E — E,es +il/2

pot res

¢ e (9.7b)

2 = S,(F) (9.7a)

= 62i7]
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where we have defined a non-resonant (i.e. potential) and a resonant part of the
phase-shift by

pot S;1/2*(E0)

2in —
e = o (9.8a)
Sy V2 (By)
p2imes _ €08 N, + i sinnp®® _ E—-FE,.,—i/2 (9.8D)
cosn,® —isinn;®  E — E,e +11'/2
r
= 1—1 , (9.8¢)
E — Eyoy +40/2

such that n, = 72 + 7y, It is clear from eq. (9.8¢c) that for |E — E,.| >> T
ne — b, such that in energy regions far from the influence of a resonance, the
phase-shift, 7, is a smooth function of E, given by eq. (9.8a). From eq. (9.8b) and
the Euler’s identity tan 6 = (e® — e=%)/(ie? + ie=%), it follows that

r
t = = 9.9
anm, 2(E7‘es _ E) ( )
such that the resonant part of the phase-shift must go through an odd multiple
of m/2 as F traverses FE,. Finally, using eq. (1.33a), and the Euler’s identity
sinf = (e — e %)/(2i), we obtain the following purely resonant contribution to
the partial cross-section

res __ 4m -2, res __ 4m 1-\2/4
o, = ﬁ(% + 1) sin“ 9 = F(%—i— 1) (B 1T/

(9.10)

which is the famous Breit-Wigner formula for a the resonance shape of the cross-
section. From this equation it is clear that at £ = E,.; + I'/2 the cross-section
is equal to half its maximum value which exactly accounts for the name “reso-
nance width” of I'. In practice however this simple line shape is distorted by the

interference from the background or potential phase-shift, nf"t.

Thus, the existence of resonance states in many molecular reactions show up as
complicated structures in the S-matrix or cross-sections, and as such constitutes
an important physical phenomenon that must be taken into account when ratio-
nalizing anomalous behaviors in scattering data. Actually this point is beautifully
illustrated in chapter 6 where we discovered a sharp (at first disturbing) peak in
the reaction probability as a function of the collision energy, which as we shall soon
show correspond to the formation of a resonance. However, the amount of work
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associated with the explicit location of the energy positions and life-times of the
resonances have been (and to some extent still is) a serious problem to theoreti-
cians. One way to efficiently characterize such resonances is through the use of
so-called complex methods, as is the topic of the next two chapters.

9.3 How are resonances formed in quantum
dynamics?

The formation of resonances owes to the existence of an attractive well in the in-
teraction potential, and ion-molecule systems like Ht+05 are good candidates for
this[106]. Quantum mechanically, we distinguish between two different kinds of
resonances owing to the underlying mechanisms. The simplest are the so-called
shape or elastic resonances where the wave function is trapped in the well behind a
barrier. As illustrated in figure 9.1 this could be the result of a non-adiabatic cou-

V/\ Vo
\

Ay
>

R

Figure 9.1: Shape resonances correspond to standing waves of the system that tunnel out
through a barrier. The barrier is the result of a non-adiabatic coupling between the two diabatic
surfaces (the dashed curves)

pling between respectively an attractive and a repulsive diabatic potential energy
surface, or it could simply be a centrifugal barrier (see second term in eq. (3.1b)).
In chapter 6 we also found indications of a shape resonance in the model system of
two strongly coupled repulsive diabatic surfaces, see figure 6.1. For energies near
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eigenenergies of the “binding” part of the Hamiltonian (e.g. the zero-order Hamil-
tonian in the absence of non-adiabatic coupling, see dashed curves in figure 9.1),
the system forms standing waves in the well and leaks out through the barrier
via a tunneling mechanism. Thus, shape resonances can occur in a simple one
dimensional system.

Feshbach or inelastic resonances, on the other hand, are associated with energy
transfer from translational motion to some internal degree of freedom. In figure 9.2,
a continuum state is coupled to some bound state of the vibrational motion, and by
this redistribution of the collision energy the system is trapped. Energy then flows
back from the vibrational to the translational mode, and eventually enough energy
is accumulated in the dissociative coordinate to enable the system to escape.

\ /

/
\ /

Vibration
_—]

Translation

N
N
” g

R r

Figure 9.2: When continuum states in the translational motion couple to bound states of some
internal degree of motion (e.g. vibration) Feshbach resonances are formed.

Thus, common to both types of mechanisms is that they lead to meta-stable states
that are embedded in the continuum and in resonance with the discrete energy
levels of the binding part of the system, which of course accounts for the name
“resonance states”. So, loosely speaking, ordinary continuum wave functions turn
into bound-state-like wave functions in the vicinity of these “zero-order” energies,
and the coupling to the dissociative part of the Hamiltonian broadens these discrete
energy levels, such that the width (I') depend on the coupling strength between
the two manifolds. Thus, in conclusion we note that the characteristic resonance
structures observed in cross-sections, as described in section 9.2, are actually “fin-
gerprints” of the underlying “binding” part of the system.
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9.4 How can resonances be located?

Two important consequences follow immediately from the simple characterization
of a resonance state given above in section 9.1. Since the energy must be real
positive in any scattering experiment (k* = 2uFE/h?* > 0), one can never have a
system which is only decaying. Hence resonances are always accompanied by, often
numerous discretized, continuum states. Furthermore, from a “methodical” point
of view, the complex value of the resonance energy and the divergent property of
¥;°°(r) mean that we cannot obtain resonance states simply by solving the Hermi-
tian Schrodinger equation subject to real boundary conditions. In other words the
numerical methods developed for bound problems are not directly applicable to
the treatment of resonance states. This is a complicating aspect in the theoretical
study of resonances, and have led to many different numerical methods. In the
following we briefly review some of the most popular time-independent methods
used to locate resonances in quantum dynamics, and especially focus on two com-
plex methods which form the basis of the work presented in this part of the thesis.
As noted in the summary of the last part of this thesis time-dependent methods
have also been applied successfully to the study of special situations of molecular
resonances (see also reference [107,108]), but it is the overall point of view of this
thesis that the time-independent methods, to be discussed below, offer the most
general approach to the location of resonances.

One “brute force” way to locate resonances is of course to solve the close-coupled
(vibrational) equations (see eq. (3.10) or eq. (3.23)) with the Siegert state asymp-
totic boundary conditions given in eq. (9.3). Alternatively one can also solve the
coupled equations subject to the general boundary condition given in eq. (9.1), and
then look for poles or structures in the S-matrix[106] (i.e. rapid jumps of the reso-
nance part of the phase shift through 7/2 modulo 7, see paragraph below eq. (9.8)).
However both these direct approaches are very demanding in terms of computa-
tional time, as the calculation has to be repeated for many different collision ener-
gies. Especially if the system displays very sharp resonances (i.e. long-lived) one
needs a very fine grid in the collision energy. Also the existence of short-lived res-
onances can give rise to problems when using these methods, since generally the
exact position and width can be difficult to assign for very broad or overlapping
resonance lines. Another method is the so-called stabilization method[109] where
the system is placed in a box of slightly varying size. The resonance states are
then found as the solutions to the £2 problem that are stable with respect to small
variations of the box-size. This is a very easy scheme to implement, but it has not
been very popular in terms of actual applications to real systems, due to often low
accuracies of especially the calculated resonance widths. A way to overcome these
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problems more generally is to extend the quantum mechanics to non-Hermitian
Hamiltonians, which leads us to what we shall refer to as the complex methods.

In the complex coordinate method® (CCM), the reaction or dissociative coordi-
nate (e.g. R) in the total Hamiltonian is complex scaled, and the resulting non-
Hermitian eigenvalue problem is solved using standard complex eigenvalue rou-
tines. Formally one encloses the system in a box (£? method) and transforms the
Hamiltonian, H(R), according to

H(R) — H (Re?) = H (9.11)

The resonances then correspond to the complex eigenvalues, &, = E,, — il',,/2, of
H’ which are stable with respect to variation of the scaling-parameter 6, i.e.

9E0) _

This complex coordinate method is based on rigors mathematics (dilatation trans-
formations) due to the work of Balslev® and Combes[110] and Simon[111,112] in
the early seventies. The relation between the resonance position, F,, and width,
I, and the scaling-parameter, 6,, is given by the fundamental condition

Ty
(En - Eth'res)

tan(26,,) = 5 (9.13)

which is the essence of the Balslev-Combes[110] theorem which forms the basis of
CCM. In eq. (9.13) Ejpres is the threshold energy below which the bound states

3In the physical chemistry literature this method also goes under different names like “com-
plex scaling” and “complex coordinate rotation”, but throughout this thesis we adopt the name
“complex coordinate method”. This is partly in loyalty to Nimrod Moiseyev, who has used this
term consistently in his numerous publications (e.g. [103]) and whom I had the pleasure to have
private communication with several times during my study.

“It so happens that Balslev was actually teaching mathematics at the University of Arhus when
I was a undergraduate, and I followed his lectures for a year. Ironically, ever since I started to
study the CCM I have in vain tried to find someone how could explain to me the mathematical
foundation of this method in detail. I have over time approached some of the experts in the
application the CCM to molecular resonances, and it appears to me that the CCM is simply
considered a “recipe”.
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Rotating scattering state /

Figure 9.3: Schematic illustration of the eigenvalues of the complex-scaled Hamiltonian as
they are gradually rotated into the complex energy plane. The filled dots represent revealed
resonances, whereas the empty dots correspond to resonances not yet exposed due to a too low
rotation angle 0 (see text below eq. (9.13) for a description).

are located, and we note that all the parameters entering eq. (9.13) strictly belong
to the same channel as Fjp,.;. Next recalling the characteristics of the bound, res-
onance and scattering states, outlined in section 9.1, we can now give a schematic
representation of the eigenvalues of the complex-scaled Hamiltonian as they are
gradually rotated into the complex energy plane, see figure 9.3. Note that the
bound states stays below the threshold on the real energy axis (I'pouna = 0), the
resonance states correspond to stagnation-points which satisfy eq. (9.12) and (9.13)
and the scattering states just continues to be rotated into the complex energy plane
as f increases. The computational advantage of this variational complex method is
that it isolates, in principle, all the resonance states from the continuum states as
stationary points in the complex energy plane of #-trajectories, see figure 9.3. Also,
as this is an £2 method it enables us to use numerical techniques developed for
bound state problems. The CCM has been applied successfully to many different
physical systems [113-116], but it should be clear from eq. (9.11), that the ana-
lytical complex continuation of the Hamiltonian can only be accomplished when
one has an analytical expression for the potential energy function. In other words
the CCM has for many years mainly been restricted to simple analytical model
systems. However by using the identity

H = / dR {(I)m (R)H (¢”R) @, (R)} (9.14a)

—m,n

— i / _dR {@m (e *R) H (R) ®, (e*ieR)} (9.14b)
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the complex scaling is shifted from the Hamiltonian to the (real) basis functions,
®,,(R), which are in turn known analytically. This idea of “backward scaling”
the basis functions as opposed to “forward scaling the Hamiltonian”, forms the
starting-point of the work to be presented in chapter 11. Here a new method is
developed where matrix elements expressed in a multi-dimensional discrete variable
representation (DVR) are backward scaled to give the equivalent of eq. (9.14b).

The other complex method, due to Jolicard and Austin[117], and here referred to
as the optical potential method (OPM) , consist of adding a local optical potential
in the asymptotic region of the potential energy function. This method is also
an £2 method, and as discussed in section 1.1 the optical potential acts as an ab-
sorbing boundary removing flux from the system as it approaches the asymptotic
region, and thereby preventing reflection and transmission from the artificial box
boundaries. The central idea of the OPM is, that by varying the amplitude of the
optical potential the system is slightly perturbed, and resonances show up as stable
eigenfunctions of the non-Hermitian Hamiltonian just like in the CCM. Thus, the
OPM also satisfy the variational condition, eq. (9.12), just now 6 is an amplitude
parameter in the optical potential. Naively one could say that this method resem-
bles the stabilization method mentioned above, where the system is perturbed at
the boundary. However it is important to emphasize that the OPM is an extension
of quantum mechanics to the non-Hermitian domain of the Hamiltonian much like
the CCM. Actually Rom, Lipkin and Moiseyev[118] have shown that by a specific
choice of the local optical potential (a complex potential) the CCM can be shown
to be identical to an optical potential method. In practice, however, the optical
potential is often chosen as a simple negative imaginary potential (NIP) known
from time dependent molecular dynamics[84-86]. Consequently, the OPM with
an arbitrary optical potential may not always produce the correct positions and
widths of the resonances (see discussion to come in section 10.2). This problem is
closely related to the fact is that in principle the NIP should be perfectly absorbing
in the whole energy range of interest, which can be a serious problem in practi-
cal calculations. Hence boundary effects created by the finite nature of the basis
set can be significant, leading to unphysical perturbations of the system, which
in turn shifts the actual position and width of the resonances. The CCM, on the
other hand, is based on rigorous mathematics, and hence, by virtue of the Balslev—
Combes[110] theorem, the complex scaling expressed in eq. (9.11) or eq. (9.14b) is
“guaranteed” to give the correct resonances — of course within the approximation
of a finite basis set. However, it should be stressed that the OPM has important
advantages over the CCM. First, the overall numerical scheme is very simple, and
we need not worry about the analytical nature of the potential energy term. Sec-
ondly, there exist good candidates in the literature for almost perfectly absorbing
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NIP’s [87,119].

We close this chapter by outlining a simple correction procedure for the OPM
proposed by Jolicard and Humbert[120]. They showed that for two successive
calculations of the complex resonance energy, made for the two values A; and A,
of the amplitude parameter in the NIP, a corrected energy is given by

En, — €,

gres:5A2+ 1_Sl,h/g!,X2

(9.15)

where &) = 0 /0N = <<I>;rX |0Vt /OA| <I>A>. The associated corrected resonance
eigenfunction reads as

Dy, — Dy,

(I)res = 2 T e e
T e

(9.16)

This correction procedure is derived from the generalized complex Hellmann-Feyn-
man, theorem mentioned in section 3.2 (eq. (3.29) with & — 6), which takes a very
simple form for a resonance state since the analogous of eq. (9.12) is also satisfied
in the OPM. We also note that recently [121] the Hellmann-Feynman theorem has
been applied to the CCM, leading to an algebraic #-equation which can be solved
iteratively to give a correction to the rotation angle. However, the problem with
these schemes is that since eq. (9.12) is only strictly satisfied for a resonance-state
they do only produce meaningful corrections in the immediate neighborhood of
such resonance states. Thus, for model potentials where the approximate resonance
positions are often known in advance these correction procedures can be very useful,
but in the general situation this is not always the case.
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Resonances in
H™+0- by the optical
potential method

The objective of the work to be presented in this chapter is twofold: First we want
to re-examine the resonances of the HT+QO; system, employing a different method
than the close-coupling approach previously used by Grimbert et al.[106]. The
method of choice is the optical potential method (OPM), reviewed in the previous
chapter, since this is a very easy scheme to implement. The second objective is to
generally evaluate this method against the close-coupling approach, hoping to be
able to set up a computational scheme which is more general and effective in the
sense that it enables us to calculate and subsequently isolate all the resonances in
one step.

Thus, this work reviews the OPM, summarizes some techniques and tools to iso-
late and verify the resonances, and subsequently reports calculations of resonance
positions and widths for the electronically elastic HT 4O collision described in the
framework of the Infinite-Order Sudden (IOS) approximation. The positions are
shown to be in reasonable agreement with previous results obtained for the system
solving the close-coupled equations[106]. However, we also observe very long-lived
resonances that were not reported before.

The chapter is organized as follows. Section 10.1 presents the overall numerical
scheme in which a negative imaginary potential is added to the asymptotic part of
the electronic potential energy surface. In section 10.2 we present the numerical
results obtained using this optical potential method and compare the resonance
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positions and widths with previous results for this system in the framework of
the IOS approximation. Finally section 10.3 concludes and sums up the most
important features of the optical potential method.

10.1 Method of calculation

In this section we present the overall numerical scheme for our implementation of
the optical potential method outlined in section 9.4. The Infinite-Order Sudden
approximation (IOS) and its limitations will not be explained in great detail, we
instead refer to a review paper by Baer[41] and the references mentioned therein.
The numerical scheme is formulated in terms of an optimized discrete variable
representation (DVR) of the two dimensional wave function. Many of the numerical
techniques and tools used in this implementation have already been discussed in
detail in section 2.2, and we shall only briefly review the most important features
of the DVR/FBR-schemes.

Figure 10.1: Definition of the translational coordinates R, the vibrational coordinate r and the
fixed relative angle ~.

An important objective of the work presented in this chapter is to reproduce the po-
sitions and widths of the resonances in the HT+O, system calculated by Grimbert
et al. [106]. Thus, we are going to make the same approximations for the colli-
sion, i.e. the study is carried out in the framework of the IOS approximation[41],
where the relative angle 7 is fixed to 45°, cf. figure 10.1. Ion-molecule systems usu-
ally differ significantly from atom-molecule systems because the potential is more
attractive. Grimbert et al. [106] further argue that since the lifetimes of the reso-
nances in H*+Q,, with the exception of two, are found to be small compared to
the characteristic rotation time of an O, molecule (of the order of 107! s), the IOS
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approximation is justifiable. Thus, unless otherwise mentioned, the parametrical
v dependence is omitted throughout the rest of this chapter.

10.1.1 The 10S Hamiltonian

In the IOS approximation the Hamiltonian for the system under consideration
reads as
~ 92 R 0> R +1)
H(r,R) = — — —+—->-+V(,R 10.1
U S 0 " a0 T o TV (104

~  RH(L+1) =~
=T —+h(n R 10.1b

where / is the relative orbital angular momentum and fl(r, R) = ’i‘ﬁ—V(r, R) is the
O, Hamiltonian depending parametrically on R. The definition of the two Jacobi
coordinates r and R is illustrated in figure 10.1. We further define the zero-order
translational Hamiltonian

~ A~ R0+ 1
L)

72#1: NE + Veff(R) (10.2)

where the effective potential, V.;;(R), is defined as the minimum of V (r, R) with
respect to the vibrational coordinate . In the next two subsections we will define
a complete direct product basis-set in r and R, which shall serve as the working
basis-set when we later set up the non-Hermitian Hamiltonian, and subsequently
diagonalize it. To obtain this optimized basis-set we shall first use truncation
techniques like preconditioning in a zero-order Hamiltonian and successive adia-
batic reduction (SAR) — all techniques that were discussed in section 2.2. The
subsequent truncations will be done according to some fictive total translational
energy (Fiy), and it is important to note that this collision energy does not ex-
plicitly enter the overall scheme for the optical potential method — only when we
design the basis-set. This is exactly one of the advantages of the complex methods
over the close-coupled approach, as pointed out in section 9.4. Thus, when FE;,
is mentioned in the following subsections it should be interpreted as some sort of
truncation parameter rather than an actual total translational energy.

10.1.2 Definition of FBR and DVR in the translational coor-
dinate

In the translational coordinate R, we use a primitive FBR basis-set of particle-
in-a-box (PIB) sin-functions. These basis functions are simple £? functions that
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define a DVR basis-set in a very simple way, see subsection 2.2.5. We start by
defining the box for the translational coordinate. As this coordinate is clearly
not “bounded” we will have to provide the box parameters, R,,;, and R,,.., by
some means of guessing, based on the topology of the potential energy surface,
Vers(R) in eq. (10.2), and subsequently test for convergence. It should be noted
that the presence of long-range multi-polar interactions in ion-molecule systems,
like Ht+0O,, result in a much larger value of R,,,, than for the corresponding
neutral atom-molecule system. Next, we shift the domain of R to go from zero to
R, por — Ronin and define the size of the FBR and the associated DVR basis-set, by
specifying the underlying grid. As mentioned in subsection 2.2.5, the PIB-DVR
has an equidistant or uniform grid, and a simple classical analysis of the de Broglie
wavelength gives a grid spacing of

277 n\/Q(Etot - Vmin),utot

where 7 is a parameter larger than unity (typically 3-4). The primitive normalized
FBR basis-set is thus defined as

(10.3)

5 R n=1,2,...,NR
on(R) = 7 sin (gﬂ ),where Np = Bmes—Fonin _q (10.4)
e e R S ]Oa Rmam - Rmm[

and as discussed in subsection 2.2.5, it is isomorphic to a DVR basis-set, {|R},), p =
1, Ng}, cf. eq. (2.38). This DVR, and the underlying uniform grid, {R,, p =
1, Ng}, will constitute the “lowest-level” basis-set in the R coordinate, and we
shall not give any further reference to the explicit FBR in eq. (10.4). It should be
clear from the context that so far this working basis-set has not been optimized for
the numerical problem at hand — or to use a DVR terminology — the grid points
have not been chosen so as to reflect the physics of the problem. In other words we
would like to have a truncated and optimized DVR grid that reflects the topology
of the potential energy surface such that the grid is dense in regions where the de
Broglie wavelength (cf. eq. (10.3)) is small and more sparse elsewhere. To obtain
this we successively employ preconditioning, truncation and the HEG optimizing
scheme, all presented in subsection 2.2.6. Using the basic property of the PIB-
DVR (see eq. (2.40) and (2.41)) we first construct a set of eigenfunctions of the
zero-order Hamiltonian defined in eq. (10.2)

Ng

Holg) = Elg),  la) =D (Rlq)[R}) (10.5)

p=1
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This basis-set, {|q), ¢ = 1, Ng}, is then truncated according to a given collision en-
ergy Ei.. The resulting compact basis-set, {|q), ¢ = 1, NF¥% < N}, is then used
to construct a new HEG-DVR basis-set by diagonalizing the position “operator”

RIR,) = RRy), Ry = (R,IR)IRL) (10.6)

p=1

This set of eigenvalue equations thus defines a compact DVR basis-set, {|R,), ¢ =
1, NHEC} with the optimized grid points given as the eigenvalues. Note that the
new HEG grid, {R,, ¢ = 1, NF¥¢}, as opposed to the original PIB grid, {R,, p =
1, Ng}, is not uniform. This optimized HEG-DVR basis-set will constitute the
working basis-set in the coordinate R. As it is a DVR, the potential energy function
is simply diagonal in this basis (eq. (2.40)), and the kinetic energy term is easily
constructed by transforming back to the PIB-DVR (eq. (10.6)) and then using the
analytical expression of the FBR (see eq. (2.41) and (2.42)).

10.1.3 Definition of FBR and DVR in the vibrational coordinate

For the vibrational coordinate » we also use a primitive FBR basis set of PIB sin-
functions. Hence, we proceed in an analogous way to the previous section, except
in this case the size of the r-box is determined from the fact that the system is
bound in this degree of freedom. Thus, r,,;,, and 7, are given as the classical
turning points for the potential energy surface at the energy F;;. Consequently
eq. (10.3), eq. (10.4) and subsection 2.2.5 also apply after the substitution R — r
is made, but it is important to emphasize that the constructed FBR/DVR scheme
is of much smaller size than for the unbound R coordinate (i.e. N, < NFEY < Np).
To construct a compact basis-set in the vibrational coordinate we next employ the
SAR scheme presented in subsection 2.2.8. Thus, in the PIB-DVR for r, we first
setup a set of eigenvalue equations for the fixed R-Hamiltonian, h(r; R,), defined
in eq. (10.1b).

~

h(r; Ry)|m, q) = Em(Rq)|m, q) (10.7)

This defines a set of adiabatic vibrational states in each of the HEG grid points
obtained through eq. (10.6). For each HEG grid point, R,, the local basis-set of
the ray-eigenstates, {|m,q), m =1, N, }, is next contracted by keeping only those
states for which the adiabatic energy, E,,(R,), is located below the threshold en-
ergy, Ei,+(v), corresponding to the energy in the lowest vibrationally closed channel
H*+0,(v, X°E,). That is, at for each HEG grid point, Ry, we defined the size
of the local adiabatic basis-set, N?, such that Eye(R;) < Eir(v) < Enoyq. We
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can then combine this compact adiabatic basis-set with the HEG-DVR defined in
eq. (10.6) by means of a direct product. Thus, we finally define the overall working
basis-set in of both coordinates, » and R, as

m=12...,N/!

10.8
¢=1,2,... NHEG (108)

m. Ry) = [m.q)|R,)  where {

10.1.4 The optical potential method

As mentioned in section 9.4 the OPM is essentially a non-Hermitian variational
method in the amplitude parameter of a NIP added to the asymptotic part of the
potential energy function. Many different kinds of NIP’s have been proposed in
the literature [84-86,119], and we choose an exponential form whose absorbing
properties have been investigated thoroughly by Vibék and Balint-Kurti[87]. Thus
the NIP, V,,:(R), reads as

0 for Rpin <R <Ry
‘/Ith (R) == —ZAN eXp (_2@) for RO < R S Rmaw

R—Ry

(10.9)

where A is a premultiplier used to minimize the reflection and transmission from
the potential and N is a normalization constant found numerically to be 13.22 [87].
For a given energy domain reference [87] provides optimized tabulated values for
the parameter A and the range of definition, AR,,: = R,,00 — Rmin. However in the
present application of the optical potential to locate resonances, the premultiplier
A is not a fixed parameter, but rather a variational amplitude parameter. Thus,
we cannot simply follow the guidelines given in reference [87] to assign {A, AR, }.
Instead we have to use many different values of AR,, to test for convergence.
This clearly emphasizes yet another drawback of the OPM, as compared to the
CCM; the added optical potential introduces new parameters into the numerical
scheme. This usually implies a lot of additional convergence tests to determine
these parameters.

The optical potential, eq. (10.9), is added to the total Hamiltonian, eq. (10.1a),
and for different values of the parameter A, a matrix representation of this non-
Hermitian Hamiltonian is then computed in the basis-set derived above, eq. (10.8).
It is important to note that since the optical potential is only a function of R,
and the complete basis-set is a DVR in this coordinate, the addition of the NIP
just adds complex values of V,,; (at the HEG grid points) to the diagonal. Thus
the DVR in the translational coordinate, makes the implementation of the optical
potential method very easy. The computed complex symmetric matrix is next
diagonalized for many different values of A, and for successive calculations in A
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the produced complex eigenvalues are connected using a maximum-overlap scheme
for the associated complex eigenvectors. Finally the A-trajectories are plotted
in the complex energy plane with the real part (i.e. energy position) along the
positive z-axis and the imaginary part (i.e. half width) along the negative y-axis
(recall figure 9.3). A visual inspection of each trajectory next follows in order
to determine which ones correspond to either a bound, continuum or resonance
state. The bound states are not affected by the presence of the NIP placed in
the asymptotic region, and hence they show up as coinciding dots on the real
energy axis below the value of the threshold energy, i.e. the zero-order vibrational
energy in the entrance channel. (Bound states have in principle an infinitely large
lifetime corresponding to zero width, i.e. no imaginary energy component). The
resonance and continuum states, on the other hand, are only found above this value
of the threshold energy. The latter have amplitude in the whole coordinate space
and hence they are very sensitive to small changes in the NIP. Consequently the
continuum states correspond to trajectories which are continuously rotated into
the negative imaginary energy plane as the amplitude parameter, A, increases.
From the theory of resonances by complex methods (see eq. (9.12)) it follows that
resonance, or quasi-bound states, are visually identified as stagnation points or
cusps in the complex energy plane. However, it is very important to emphasize that
these simple characteristics of the three different types of states are not generally
sufficient as a guideline to isolate resonance states when using the optical potential
method. The reason for this complicating aspect of the optical potential method
is of course that this is an approximate method as pointed out in section 9.4. The
presence of the NIP slightly perturbs the system in a non-physical way, thereby
causing it to change its characteristic behavior under the complex scaling, i.e.
variation of A. This means that sometimes continuum trajectories can behave as
resonance trajectories and vice versa. Especially for large values of A, i.e. for large
perturbations from the NIP, can one observe spurious behaviors of the complex
trajectories. All in all this means that one has to be a little careful before a final
identification of a resonance state can be made. In other words we need additional
techniques or tools to verify the existence of a resonance after it has been isolated.
We have come up with the following simple tests:

1. Perform a convergence test by slightly changing the remaining parameters
entering the definition of the negative imaginary potential. We found it
to be especially useful to repeat the calculations with different values of the
domain of definition for the NIP. Trajectories corresponding to a real physical
resonance will show very little effect on these changes in the domain of A
where the quasi-bound states are formed. “Ghost-trajectories”, on the other
hand, will not show the same invariance with respect to these variations, and
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often one observes dramatic changes of the trajectory for all values of A. (See
figure 10.4 and figure 10.5 in the next section for an illustration).

. Alternatively one can graphically plot the probability density of the state

calculated at the value of A where the stagnation point is observed. As
pointed out in section 9.1 the divergent property of the asymptotic part of
a resonance wave function increases with the width. Resonances will show a
large amplitude in the interaction region (with vibrational excitation for Fes-
hbach resonances) and a relatively small periodic amplitude in the entrance
channel corresponding to the pure outgoing boundary condition mentioned
in section 9.1 eq. (9.3). Continuum states, on the other hand, will display a
relatively large amplitude in the asymptotic regions of the channel. For very
sharp resonances it can actually be difficult to distinguish a resonance state
from a bound state since it has almost negligible amplitude at the boundary.
Thus, if one first filters off all the bound states by truncating the trajecto-
ries below the threshold energy this test can be useful — although a bit time
consuming. This technique can of course also be used when applying the
complex coordinate method to be discussed in the next chapter, although
this is in principle an exact method, and should therefore not give rise to
spurious behavior of the trajectories. (See figure 10.6 and figure 10.7 in the
next section for an illustration).

. Finally we also mention the the self-correcting scheme by Jolicard and Hum-

bert[120], eq. (9.15), as a tool to verify resonances. First we note that this
scheme only produces meaningful corrections to the resonance positions when
the successive values of the variational parameters A; are close to a resonance.
Outside this domain of A, and for non-resonant states, eq. (9.15) gives “arbi-
trary” complex values, which makes the visual tracking of the new “chaotic”
A-trajectories in the complex energy plane extremely difficult. This is of
course not an artifact of the self-correcting scheme itself, but simply stems
from the fact that it is based on the approximation in eq. (9.12) which is
only satisfied in the immediate neighborhood of a resonance state. Thus,
this scheme should only be used at the values of A where the stagnation
point is observed, which makes it less attractive as a general tool for verify-
ing a resonance state. However, we found it very useful as a tool to confirm
and correct the exact positions of the resonances once a positive identification
was made by either 1 or 2.
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10.2 Numerical results

In all the reported calculations we have used the same collision conditions as Grim-
bert et al. [106], in order to compare with their results. Thus, a single value of
the relative angle, v = 45° in figure 10.1, and an orbital angular momentum value,
¢ =0 in eq. (10.1a), are considered. The latter implies that the barrier produced
from the centrifugal term in eq. (10.1a) can be neglected, and consequently the
system will only display Feshbach resonances under these circumstances. Fur-
ther the collision energy is restricted to E;; < 0.2eV as measured from the
H* 4 Oy(v = 0, X°%;) dissociation threshold. As in reference [106] we are also
going to disregard the charge transfer channel, H + OF (X?II,), which leaves us
with an electronically elastic collision problem. All in all this implies that only
the v = 0 channel is open (vibrational elastic scattering). Thus the calculated
Feshbach resonances are of the type

[HO3|" — H' + Oy (v=0,X°%)) (10.10)

The diabatic electronic potential energy surface correlating with HF+-O05(X°%) is
that of Grimbert et al. [122]. Numerical values of the corresponding potential on
the HEG and PIB grid, defined in section 10.1, are obtained by a two-dimensional
spline interpolation in r and R, see figure 10.2. The box parameters in the two
Jacobi coordinates are fixed to

R,in = 0.0 au Rz = 20 au (10.11a)
Tmin = 1.0 aU Tmaz = 2.9 a0 (1011b)

Since no data points are available in the interval going from R = 15au to R = 30 au
we used the value of the potential at R = 30au in this interval. This produces
a slight discontinuity at R = 15au of the order of 0.02 mHartree. However, this
approximation is made in order to reserve some additional space for the domain of
definition of the NIP. Perhaps a somewhat more disturbing feature is the cut-off
of the surface of reference [122] at 74, = 2.9 au, see figure 10.2. At this value of
the vibrational coordinate (and R ~ 2 — 3au) the potential energy is far below
the maximal collision energy of 7mHartree ~ 0.2eV. Consequently the potential
energy surface we use in the calculations has an infinite wall at » = 2.9 au. In the
close-coupled calculations by Grimbert et al. [106] this caused no problems since
they used vibrational eigenstates of 02(X3E;) as the basis-set in the r coordinate.
Thus they employed a vibronic diabatic basis-set which has negligible amplitude at
Tmaz = 2.9 au. However, as explained in subsection 10.1.3, eq. (10.7), we employ
a vibronic adiabatic basis-set in r, which depend parametrically on the HEG grid
points defined in subsection 10.1.2. As mentioned before this makes it possible to
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construct a very optimized and compact basis-set, cf. eq. (10.8), which so to speak
follows the dynamics as the collision takes place. The problem, however, is that this
adiabatic basis-set does not have the “built-in” boundary conditions that makes it
ignore the presence of the infinite wall at large values of r. This is probably the
most significant difference in the “physical setup” of the two calculations.

Figure 10.2: Plot of the spline interpolated electronically diabatic potential energy surface
correlating with HT+02(X?®% ) [122]. The definition of the two Jacobi coordinates r and R are
illustrated in figure 10.1 and the relative angle  is fixed at 45°. The origin of energies is the
vibronic zero-point channel energy. (Note also the cut-off of the surface for large values of r).

Using the numerical method explained in section 10.1 and the “physical setup”
mentioned above we next performed calculations of resonances in the electronically
elastic H*+0,(X?%,) collision. In these calculations we used 40 particle-in-a-box
functions in r, and 350 in R. Using the HEG scheme the later basis-set was
truncated to 100 DVR functions. The truncation of the adiabatic states in r
resulted in 2 to 19 basis-functions depending on R. Thus, N, = 40, NI = 2 — 19,
Ng = 350, and NFFE = 100 in section 10.1, and the total size of the contracted
direct product basis-set, defined in eq. (10.8), was in the order of 550. This was
sufficient to obtain convergence for almost all of the resonances. The convergence
was tested by employing the first of the techniques discussed in subsection 10.1.4.
Thus, we performed successive calculations with 5 different values for the domain
of definition for the NIP. R,,,, in eq. (10.9) was fixed as listed in eq. (10.11a) and
R, was successively given values corresponding to AR,y = Rpar — Ro = 3,4,5,6
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Figure 10.3: Plot of the all the A-trajectories. Note that the complex energy window shown in
this plot does not include some of the broad resonances. Also, bound states are excluded as the
energy axis is scaled relative to the threshold energy. The two arrows mark a typical continuum
and resonance trajectory, respectively shown in figure 10.4 and 10.5.

and 7au. For each calculation, corresponding to a fixed AR,,, the variational A
parameter in eq. (10.9) was changed from zero to 8 x 1073 in 40 steps of 0.2 x 1073.
This turned out to be sufficient to isolate all the resonances.

Figure 10.3 shows an overview-plot of all the A-trajectories in the complex energy
plane, with AR, fixed to 7au. In figure 10.4 and figure 10.5 we have plotted A-
trajectories with different values of AR, corresponding to the two characteristic
situations marked by the arrows in figure 10.3. The trajectories are plotted in the
complex energy plane with the real part (i.e. energy position) along the positive z-
axis and the imaginary part (i.e. half width) along the negative y-axis. Figure 10.4
shows an example of a typical continuum state which is very sensitive to small
changes in the NIP. Note the spurious behavior of the trajectories with small
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values of AR,,. They actually behave as a resonance state in the sense that
they have stagnation points - although at different positions in the complex energy
plane. However, this is not a “true resonance state”, but rather a continuum state
which is perturbed by an imperfect NIP. This is clearly seen from the trajectories
obtained from calculations with a more absorbing or perfect NIP (i.e. AR,y >
5au) where the trajectories are continuously rotated into the negative imaginary
energy plane as the amplitude parameter, A, increases. Thus, figure 10.4 clearly
illustrates the need and importance of additional convergence/verification tests as
discussed in subsection 10.1.4; with only one calculation (e.g. AR,y = 3au) one
could erroneously confuse the continuum state in figure 10.4 with a “true resonance
state” as shown in figure 10.5. In the latter case (figure 10.5) the trajectories show
very small changes with variations of AR,, which is exactly what characterizes
a resonance state. A close-up of the trajectories actually shows that for A and
AR,y large enough, the calculated complex energies almost coincide. Thus, the
true resonance state is only formed for specific values of both A and AR,,. All
the 5 trajectories in figure 10.5 show the characteristic behavior of a resonance
state (i.e. a stagnation point), but only 3 of them actually correspond to a “true
resonance”. Again this emphasizes the importance of a convergence test; with
only one calculation (e.g. R, = 4au) one would obtain incorrect values of the
resonance position and width. The variation of R,, corresponds to changing the
energy domain in which the NIP is an almost perfect absorber.

Finally we show a three-dimensional plot of the probability density of the wave
function for the two characteristic situations illustrated in figure 10.4 and 10.5.
Figure 10.6 shows the divergent property of the continuum state in the asymp-
totic region of the configuration space (cf. eq. (9.3) with large ;). As we do not
impose any selective boundary conditions on the wave functions in the £2 OPM,
other than the absorbing one from the NIP, continuum states show up as extremely
broad resonances in this formulation. The large amplitude in the entrance channel
explains the dramatic changes observed in figure 10.4 as the NIP (i.e. perturba-
tion) is varied. Figure 10.7 shows the resonance state with its characteristic shapes;
large rapidly changing amplitude in the r-direction of the interaction region, cor-
responding to the vibrational excitation of a Feshbach resonance, and the small
R-periodic amplitude in the asymptotic region of the channel, which corresponds to
the purely outgoing boundary condition of a resonance (cf. eq. (9.3)) as discussed
in section 9.1.

In table 10.1 we have listed the calculated energy positions and associated widths
for resonances below a collision energy of 7 x 1073 Hartree, which is the energy
domain investigated by Grimbert et al. [106]. The table reports the results from
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Table 10.1: Convergence of positions, E, and widths, T', for resonances in the H*+0, (£ =
0,7 = 45°) collisional system, described in the IOS approximation and using the OPM described
in section 9.4 and subsection 10.1.4. The table lists results from 5 different OPM calculations
with ARop = 3,4,5,6 and 7au arranged in the 5 pairs of columns. The results are reported in
atomic units and relative to the zero-point vibrational energy (3.508 - 103 Hartree as measured
from the bottom of the potential in the entrance channel, ¢f. figure 10.2). As an illustration to
this table see figure 10.5 where the resonance state number 10 is plotted.

ARy =Tau | ARy =6au | ARy =5au | AR, =4au | AR, = 3au
Nr. | E>  T¢ Eb  Te Eb  T¢ Eb  T¢ EP  TI¢
1]0814 1.8(—3) | 0814 1.8(—3) | 0.813 1.6(—3) | 0.815 2.0(—2) | 0.815 2.0(—2)
2| 1.489 1.5(—2) | 1.489 1.5(—2) | 1.489 1.5(—2) | 1.490 1.6(—2) | 1.489 1.4(-2)
312042 1.8(—1) | 2.042 1.8(-1) | 2.042 1.8(-1) | —=> = —a __a
412215 4.0(=7) | 2.215 4.0(=7) | 2.215 4.0(=7) | 2.215 4.0(=7) | 2.215 4.0(-=7)
512492 7.2(-1) | 2492 74(-1) | — —=* —a __a —a __a
6| 2.869 2.8(—4) | 2.869 2.8(—4) | 2.869 2.8(—4) | 2.869 (—4) | 2.869 2.8(—4)
7 13.092 82(—1) | 3.092 82(-1) | 3.064 8.0(—1) | 3.110 (-1) | —= —a
8 | 3.186 1.3(—6) | 3.186 1.3(—6) | 3.186 1.3(—6) | 3.186 (—6) | 3.186 1.3(—6)
9 | 3616 24(—1) | 3.616 24(-1) | 3.616 2.4(—1) | 3.615 (-1) | — —a
10 | 3.780 4.0(-2) | 3.780 4.0(-2) | 3.780 4.0(—2) | 3.780 (-2) | 3.780 4.0(-2)
11 | 3.818 8.4(—1) | 3.817 8.4(—1) | 3.824 86(—1) | —2 —a a
12 | 4.017 2.4(—4) | 4017 2.4(—4) | 4.017 2.4(—4) | 4.017 (—4) | 4.017 (—4)
13 | 4.256 5.4(—3) | 4.256 5.4(—3) | 4.256 5.4(—3) | 4.256 (=3) | 4.256 (—3)
14 | 4436 3.2(-2) | 4436 3.2(-2) | 4.436 3.2(—2) | 4.436 (-2) | 4.436 (—2)
15 | 4.665 3.4(—2) | 4.665 3.4(—2) | 4.665 3.4(—2) | 4.665 (-2) | 4.665 (—2)
16 | 4.707 1.3(=2) | 4707 1.3(-2) | 4.707 1.3(=2) | 4.707 (=2) | 4.707 (—2)
17 | 5.144 1.3(=2) | 5.144 1.3(-2) | 5.144 1.3(=2) | 5.144 (—2) | 5.144 (-2)
18 | 5.416 1.1(=2) | 5.416 1.1(-2) | 5.416 1.1(=2) | 5.416 1.1(-2) | 5.416 1.1(—2)
19 [ 5910 3.2(-2) | 5910 3.2(-2) | 5.910 3.2(=2) | 5.910 3.2(-2) | 5.910 (—2)
20 | 5.965 1.3(—4) | 5.965 1.3(—4) | 5.965 1.3(—4) | 5.965 (—4) | 5.965 (—4)
21 | 6.096 1.2(-2) | 6.095 1.2(-2) | 6.094 1.2(-2) | 6.082 (=2) | —2 ——
22 | 6.358 6.8(—2) | 6.358 6.8(—2) | 6.358 6.8(—2) | 6.358 (-2) | 6.358 (—2)
23 | 6.464 1.6(—3) | 6.464 1.6(—3) | 6.464 1.6(—3) | 6.464 (=3) | 6.464 (—3)
24 | 6.660 4.6(—2) | 6.660 4.6(—2) | 6.660 4.6(—2) | 6.660 (=2) | 6.660 4.6(—2)
25 | 6.856 7.4(—2) | 6.856 6.6(—2) | 6.856 6.2(—2) | 6.856 (-2) | 6.856 6.0(—2)

a Difficult to assign, i.e. no clear stagnation-point was found for this particular choice of the
optical potential.

b The positions of the resonances are listed in units of 10~3 Hartree.

au. We have further used the short
1) correspond to a width of 8.4 - 10~ *au.

¢ The width of the resonances are listed in units of 1073
notation (—z) for 107%, i.e. a value of e.g. 8.4(—
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Figure 10.4: Full scale and close-up plots of complex energy trajectories for the continuum state
marked by the left arrow in figure 10.3. The trajectories are obtained from calculations with 5
different values of AR,p; = Riee — Ro in eq. (10.9), and each of these 5 trajectories are made
up by 40 connected points corresponding to the different values of the variational A parameter
entering eq. (10.9). For almost all values of A the trajectories are clearly very sensitive to the
changes in the optical potential. Note the different stagnation points for the Ry, = 3 and 4au
trajectories in the right close-up plot. See also figure 10.6 for a 3D-plot of the amplitude of this
continuum state.

5 different calculations corresponding to AR, = 3,4,5,6 and 7au. It should be
evident from this table that all the listed states are indeed resonances and not
just “ghost-states”, i.e. perturbed continuum states that merely behave as quasi-
bound states (cf. figure 10.4). Actually, with the exception of resonance number
1,2,3,5,7,9,11,21 and 25, they all show complete invariance with respect to the
changes in the NIP. However, of the sensitive resonances, some of them (¢f. 3,5,7,9
and 11) even loose the characteristic stagnation point as AR,,; decreases, and thus
start behaving as continuum states. A closer inspection of table 10.1 furthermore
shows that these sensitive states are all broad (i.e. short-lived) resonances. The
reason for this behavior is easily explained when we recall the very definition and
characteristic of a resonance state discussed in the introduction of section 9.1 (cf.
paragraphs below eq. (9.3) and eq. (9.4b)). The amplitude in the asymptotic
region of the entrance channel increase rapidly with the width of the resonance,
and consequently the range needed to absorb the wave functions associated with
narrow resonances is much less than for the broad ones. This is clearly reflected in
table 10.1. However, increasing AR,,; eventually also means extending the R-box,
and the underlying grid size, which can be very costly in terms of computing time.
Also, the NIP is in practice only perfect in a narrow energy-window, ¢.e. the NIP is
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Figure 10.5: Full scale and close-up plots of complex energy trajectories for the resonance
marked by the right arrow in figure 10.3, corresponding to resonance state number 10 in table 10.1
and table 10.2. The trajectories are obtained from calculations with 5 different values of AR, =
Rz — Ro in eq. (10.9), and each of the 5 trajectories are made up by 40 connected points
corresponding to the different values of the variational A parameter entering eq. (10.9). For the
last 20-30 values of A the trajectories are clearly very insensitive to the changes in the optical
potential. Note the slight drifting of the stagnation points for the R,,: = 3 and 4 au trajectories
in the right close-up plot caused by the imperfect NIP. See also figure 10.7 for a 3D-plot of the
amplitude of this resonance state.

almost always accompanied by some reflections from the boundary. This generally
leads to shifting of the true energy positions and widths, but we expect these
perturbations from the NIP to be predominant for the broad resonances where the
asymptotic amplitude is large. All in all we conclude that the optical potential
method seems best suited to study sharp resonances.

Table 10.2 shows a comparison of the converted resonances listed in table 10.1 and
earlier results obtained by Grimbert et al. [106] solving the close-coupled equations.
The table shows 25 resonances, 18 of which correspond to the resonances located
by Grimbert et al. For the large majority of the resonances, the positions are in
acceptable agreement (i.e. |[AFE| < 0.15 x 1072 Hartree) with the previous calcula-
tions, but the widths are some times off by a factor as much as 10. It is however
reassuring to see that there is a clear match in the variations of the widths in the
two columns, but the deviations do not seem to follow any particular pattern. It is
difficult to give a clear cut explanation for the deviations, but one could probably
argue that we did not reproduce the exact collision conditions under which the
study by Grimbert et al. was conducted. Resonances are widely known to be ex-
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Table 10.2: Comparison of positions, E, widths, T", and lifetimes, 7, for resonances in the
0, = 45°) collisional system, described in the IOS approximation. The first three
columns correspond to the converted results from table 10.1 obtained using the optical potential
method. The last three columns correspond to previous results found by Grimbert et al. [106]
solving the closed coupled set of equations. The results are reported in atomic units and relative
to the zero-point vibrational energy (3.508 - 10~ Hartree as measured from the bottom of the

HT+0,(¢ =

potential in the entrance channel, cf. figure 10.2).

Optical potential method Close-coupled equations[106]
Nr. | E(107%au) T (107%au)® 7 (s)° E (1073au) T (107%au)® 7 (s)°
1]0.81 1.8(—3)P 1.3(=11)°| 0.80 1.4(-3) 1.7(-11)
2 | 1.49 (-2) 1.6(—12) | 1.49 5.8(—3) 4.1(-12)
3| 2.04 1.8(-1) 1.3(-13) | 1.85 1.2(-1) 1.9(—13)
4| 222 (=7) 6.0(-8) | —* —
5| 2.49° 7( 1)b 3(—14)® | 2.36 8.6(—2) 2.8(—13)
6 | 2.87 2.8(—4) 8.6(—11) | —= - —=
7 13.01 8.2(—1)P 2.9(—14)b| 2.93 1.3(-2) 1.8(—12)
8| 3.19 1.3(—6) 1.9(-8) | —*2 —= —=
9 | 3.62 2.4(-1) 1.0(—-13) | 3.72 1.9(-1) 1.3(—13)
10 | 3.78 4.0(-2) 6.0(—13) | 3.89 1.5(-3) 1.7(-11)
11 | 3.82° 8.4(-1)P 2.9(—14)b| 3.99 1.3(-1 1.9(—13)
12 | 4.02 2.4(—4) 1.0(-10) | —=2 —a —=
13 | 4.26 5.4(—3) 4.5(-12) | —= —= —=
14 | 4.44 3.2(-2) 7.6(-13) | —* —2 —=
15 | 4.67 3.4(-2) 7.1(=13) | 4.55 4.8(-2) 5.0(—13)
16 | 4.71 1.3(-2) 1.9(-12) | 5.08 7.5(=3) 3.2(—12)
17 | 5.14 1.3(-2) 1.9(-12) | 5.21 4.1(-2) 6.0(—13)
18 | 5.42 1.1(-2) 2.2(—12) | 5.58 1.4(—-2) 1.7(-12)
19 | 5.91 3.2(-2) 7.6(—13) | 5.87 6.8(—3) 3.5(—12)
20 | 5.97 1.3(—4) 1.9(-10) | —2 —a —=
21 | 6.09 1.2(-2) 2.0(-12) | 6.04 3.1(=2) 8.0(—13)
22 | 6.36 6.8(—2) 3.6(—13) | 6.44 6.5(—2) 3.7(—13)
23 | 6.46 1.6(-3) 1.5(—11) | 6.70 5.8(—3) 4.1(-12)
24 | 6.66 4.6(—2) 5.3(—13) | 6.81 5.2(—2) 4.7(-13)
25 | 6.86 7(—2)b 3(-=13)®> | 6.95 7.4(=2) 3.3(—13)

2 No previous resonance reported in reference [106].

bDifficult to assign, see table 10.1.

¢In this column we have used the short notation (—

z) for 1077,
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Figure 10.6: Plot of the probability density
for the continuum state shown in figure 10.4.
In this calculation AR, and A, entering
eq. (10.9), were fixed at respectively 7au and
4% 1073, corresponding to the 20" point on the
AR,y = Tau trajectory in figure 10.4. Note
the divergent property of the continuum wave
function in the asymptotic region of the config-
uration space.
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Figure 10.7: Plot of the probability density for
the resonance state shown in figure 10.5, and
listed in table 10.1 and table 10.2 as number
10. In this calculation AR,, and A, entering
eq. (10.9), were fixed at respectively 7au and
4x1073, corresponding to the 20** point on the
ARypy = Tau trajectory in figure 10.5. Note
that the characteristic resonance wave function
has large amplitude in the interaction region of

the coordinate space and a very small amplitude
in the entrance channel.

tremely sensitive to the curvature of the potential energy surface, and the extension
of the surface beyond 15au might have influenced the calculations. However, as
mentioned before, we believe that the most significant difference in the “physical
setup” of the two calculations is related to the different basis-set approaches. In
the optical potential calculations presented in this thesis we employed a vibronic
adiabatic basis-set of the order of 500 whereas Grimbert et al. used 14 vibronic
diabatic basis functions to solve the coupled equations. Apart from the obvious
difference in the sizes of the employed basis-sets, which is definitely in favor of the
present calculation, it should also be stressed that the underlying physical descrip-
tion of the collision differs in the two cases. The diabatic basis-set deals with the
somewhat disturbing cut-off of the surface at r,,,, = 2.9 au (cf. figure 10.2) in an
ad hoc way, whereas the adiabatic basis-set does not. Consequently the surface
exhibits a wall in the presented calculations which was not present in the previous
studies by Grimbert et al. This clearly makes the comparison difficult. Finally we
note that disagreements between the two compared methods have been observed
before in the literature; Monnerville et al. [123] exactly finds a disagreement for
broad resonances in the one-dimensional study of predissociation of CO. They
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argue that this is primarily due to the fact that close-coupling approaches are gen-
erally not capable of correctly reproducing very broad resonances. The shape of
the found resonances are not Lorentzian (i.e. simple asymmetric) which can give
significant error-bars when assigning the resonance position and width. We can
go along with this argument, but find it equally important to emphasize that the
OPM also has problems in this limit as pointed out above.

Table 10.2 also shows 7 new resonances, 4 (cf. 4,6,8 and 12) of which being very
long-lived (i.e. 7 > 107'%s). It is interesting to see that the only new relatively
short-lived resonances (c¢f. 13,14 and 20) are located in the most dense parts of
the spectra which is also where the largest deviations are found (e.g. 16). Thus
it seems plausible that Grimbert et al. [106] overlooked or simply missed these
resonances because they overlapped. The finding of the new very sharp resonances
is not very surprising considering the fact that the close-coupling approach, used
by Grimbert et al., exactly has a problem isolating very sharp resonances unless
the energy grid is equally very dense.

10.3 Conclusion

All the resonances found by Grimbert et al. [106] are confirmed, although the
widths of some resonances are off by a factor of 10. In the previous section we
have discussed some important issues that should provide arguments to explain
the disagreement between the two approaches. We especially drew attention to
the different basis-sets employed in the two calculations, and further pointed out
that both methods show weaknesses in the limit of very broad resonances. Given
these facts we find the agreement acceptable, but stress that it is difficult to make a
final conclusive evaluation of the found resonances relative to the previous results.
However, it is striking that we found 7 new resonances, 4 of which were very long-
lived, 7 > 107! s. First of all, this clearly shows what we expected from the very
beginning, namely that the method of close-coupled equations is not well suited to
isolate sharp resonances, unless of course the energy grid is made very dense at the
cost of computational time. We also note that the existence of these very long-lived
resonances could well signify that the use of the IOS approximation, on this system,
might be called in question. Grimbert et al. [106] argue that since they found only
two resonances with lifetimes comparable to the characteristic rotation time of the
O, molecule (of the order of 107! s), the IOS approximation was justifiable. Given
the discovery of the new resonances we question this justification, but at the same
time we acknowledge that this is by no means a definitive proof of the invalidity
of the IOS approximation applied to the HT+0, system - it merely invalidates the
way it has been justified in reference [106].
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The present study also gives an examination of the optical potential method as
an alternative to the close-coupled approach. We believe the OPM to be more
accurate and general in the sense that it, in principle, isolates all the resonances in
the complex energy plane in one step, i.e. we do not have to scan the real energy
axis. The subsequent visual inspection of the complex trajectories is however rather
tedious. This inconvenience of the OPM was further intensified by the present
discovery of spurious behavior of the trajectories. This forced us to introduce
additional techniques to isolate and verify the existence of a resonance state; we
especially focused on the convergence tests where we made small variations in
the domain of definition of the NIP, and plotted the probability density of the
corresponding wave function. To "routinely” overcome these problems discovered
with the isolation of resonances in the complex energy plane, we will have to
employ the “exact” complex coordinate method, which will be the topic of the
next chapter. However, as will be clarified in chapter 12 (see figure 12.2) — after
the numerical CCM scheme has been established in chapter 11 — this approach,
to the study of resonances on the particular surface used by Grimbert et al. [106],
was not successful.



172 Resonances in HT+0, by the optical potential method




11

Numerical complex scaling

In this chapter we shall discuss in more details yet another approach to the calcu-
lation of molecular resonances which was briefly introduced in section 9.4 as the
complex coordinate method (CCM). Especially we will present a new effective nu-
merical scheme which for the first time allows for this exact method to be applied
to a general dynamical system where no analytical expression is available for the
potential energy surface.

At the very heart of the application of the complex coordinate method (CCM) for
the calculation of resonances lies the problem of analytic continuation of a potential
energy function,V (z), into the complex coordinate plane, x — ze®, [110,111, 113,
114]. This requirement has mainly limited its use so far to analytic functions such as
Coulomb, pairwise or LEPS potentials. In order to apply the method with arbitrary
molecular potentials, such as those coming out of an ab initio calculation, one needs
a systematic procedure. Different methods have been proposed, essentially based
on the continuation of the potential matrix elements evaluated in some convenient
basis-set[115,116]. Amongst these latter methods, the identity?

Vij= /d:mpi(x) V(ze®) p;(z) (11.1a)
= eie/ . dzpi(ze ) V(z) @;(ze ) (11.1b)

was first applied by Moiseyev and Corcoran[124] to the study of molecular res-
onances of Hy and H;. This equation relates the matrix elements V;; of the

!Note that this is not a usual bra-ket matrix element (see footnote 5 on page 47), since the
left basis function is not complex conjugated.



174

Numerical complex scaling

complex scaled potential V(z) = V(ze?) between unscaled basis functions {¢;}
to those of the unscaled potential potential V(z) between backward scaled basis
functions {@;(x) = ¢;(ze~")}. It is based on the assumption that an exact molec-
ular potential is dilation analytic. In the following, we will use a bar to denote
forward scaling, such as V(z) = V(ze?), and a tilde for the backward scaling, as

in $i(z) = pi(ze™).

Eq. (11.1) is of central importance as it shifts the scaling from the potential to the
basis functions {y;} which are known analytically. This procedure was later suc-
cessfully applied by Datta and Chu[125] to the rotational predissociation of Ar-Ns.
In the same line, Ryabov and Moiseyev[126] recently proposed a method aimed
at directly providing the complex scaled matrix elements of a real potential V' (z)
determined by its values on a grid {z,}. This procedure was successfully applied
to the determination of the predissociation resonances of the three dimensional
HCO and DCO radicals. Using a Discrete Variable Representation[23,127,128]
(DVR) for the Jacobi angle «, they first computed the matrix elements of the
complex scaled potential V (Re®, r, ) at fixed values a.,. (R corresponds here to
the H-CO dissociation coordinate). By diagonalization of the resulting complex
scaled Hamiltonian H(Re® 7, a,), they were able to obtain prediagonalized com-
plex scaled ray-eigenstates {|®m,(a,))} in order to reduce the size of the overall
basis set {|®y,(a,))|a, )}

In the new approach, presented in this chapter, we adopt a different point of view,
and show how one can directly obtain the complex scaled matrix elements, starting
only from unscaled ones:

(Rp (@ (Bp) | H @ (R )) | Byr) (11.2a)
4
(Rpl (@ (Ry) [ H| @ (Ry)) | Ry ) (11.2b)

The main difference with respect to Ryabov and Moiseyev’s approach stems from
the fact that ours is equivalent to a numerical continuation of multidimensional
elements as shown by eq. (11.2). Also, it allows one to choose the dissociation
coordinate as the discrete variable, which in turn allows for the construction of
a very compact adiabatic basis-set by employing the SAR method presented in
subsection 2.2.8. This is especially advantageous in the present context, as it has
recently been shown[28] that the adiabatic energy curves provide a very good zero-
order description of the resonances. Thus, our whole approach is still based on the
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identity relation given by eq. (11.1). We will furthermore demonstrate that such a
numerical continuation can be performed for an arbitrary DVR.

The outline of this chapter is as follows. In section 11.1, we first show how one
can numerically continue matrix elements (R,|V|R,) expressed in a DVR, and
give a one-dimensional example. This formulation is then used in section 11.2
in order to obtain numerically continued multidimensional matrix elements. The
method is illustrated on a two dimensional model first introduced by Eastes and
Marcus[129, 130]. Finally, section 11.3 concludes.

11.1 One dimensional formulation

We suppose that the system is to be described in terms of a DVR {|R,),p =1, N},
related to an Finite Basis Representation (FBR) {¢,(R),n = 1, N} through the
unitary transformation

Rp) = Upnlepn) (11.3)

as described in detail in subsection 2.2.4. The goal of this section is to show how one
can obtain the (R,|V|R,/) matrix elements of the rotated potential V = V (Re®)
from the real ones

(RplVIRy) =V (Ry)dpp (11.4)

We will first derive the formulation in the case of an arbitrary FBR-DVR scheme.
The cases of both a uniform grid and an optimized grid will then be studied in more
details later. As the kinetic energy term is analytical, its complex continuation is
straightforward, and does not require any particular treatment. For example, in

the case of T = —h?/2u d?/dR?, the complex scaled kinetic operator displays
matrix elements given by
(R, TrIRy) = e 2(R,|Tr|IRy) (11.5a)

e ? [UTU"] (11.5b)

pp’

where T is the unscaled kinetic energy matrix expressed in the {¢,} basis set.

11.1.1 General formulation

Use of identity in eq. (11.1) allows us to write
(RplV|Ry) = eiw(Rp‘V‘Rp’) (11.6)
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where the (...]...) notation means that the hermitian conjugation is not used (see
the discussion on using the c-product rather than the scalar product in reference
[103]). The backward rotated |R,) vectors are naturally defined from eq. (11.3) as

N
Rp) =Y Upn|@n) (11.7)
n=1
leading to the expression
(RolVIRy) = €Y Upn(@ulV |B0) U (11.8)

nn'

Because we explicitly consider in this chapter the case where no analytic ex-
pression is available for the potential, the (&,|V|&],) integrals have to be per-
formed numerically. The most convenient way to compute such integrals con-
sists in using a related quadrature scheme (preferably of Gaussian accuracy, see
subsection 2.2.3 and 2.2.4)

@n'v‘ﬂon Z‘Pn Wq‘Pn’(R ) (11-9)

where R, and W, correspond respectively to the quadrature abscissae and weights.
In this sum, if one uses for M the same value as the number N of basis functions
©n, 1.e. if the quadrature abscissae {R,} coincide with the DVR points {R,}, then
one would obtain erroneous matrix elements. The reason is that, as explained
in subsection 2.2.3, the quadrature of eq. (11.9) would be exact for non-rotated
functions ¢, only as long as the relation n+n' 4+ d°[V] < 2M + 1 is satisfied. One
has thus to use a quadrature scheme, {R,}, of dimension higher than that of the
DVR {R,}.

At this point, it might be useful to review some of the characteristic features of
the DVR method, as presented in subsection 2.2.4. The basic relation, eq. (11.4),
is a direct consequence of the definition of the {|R,)} DVR as the transform of the
FBR {¢,} given by eq. (11.3). In fact, the (¢, |V |pn) matrix elements computed
from the associated quadrature scheme

N
(nlVIgn) = UpnV (Ry) Upn (11.10)

p

are not exact for the same reason as discussed previously. However, by the use of
the unitary transformation, they lead back to eq. (11.4). As we will show below,
this is not the case for the analogous representation of eq. (11.9).
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By using a higher order quadrature scheme {R,}, one can thus achieve an exact
evaluation of the (&, |V |@,) matrix elements of eq. (11.9). Defining the rectangular
complex matrix U

U = (Ri|n) (11.11)
eq. (11.9) can be recast into the equivalent DVR type expression

(&nlV|Zw) ZanV Uyt (11.12)

which with eq. (11.8) leads to the following relation for the (R,|V|R,/) matrix

(Ry|[VIRy) = ? [Q-ﬁ ve. g Qt] (11.13)
- - —
X(d) being the real diagonal matrix
Vq(qcf) = V(Ry)dqq (11.14)

But consequently, the (R,|V|R,) matrix elements as defined by eq. (11.8) are
no longer diagonal. This departure from usual DVR properties causes no real
problem in the formulation as will be shown in the next subsections. In the case of
a one dimensional system, one can question the utility of such a DVR scheme as it
does not lead to any advantage compared to a direct FBR formulation. Its actual
interest will appear in section 11.2 when dealing with multidimensional systems.

11.1.2 One dimensional test case

As a first application of the above formulation, we consider the case of an equi-
distant grid

{R,=pAR, p=1,N} (11.15)

(A system can always be translated such that its domain of interest lies be-
tween 0 and Ry, = (N + 1)AR). As described in subsection 2.2.5 the associ-
ated DVR {R,,p = 1, N} is the conjugate representation of the sine basis set
{¢n,n =1,N}[24,131]

2 ) nrR

enlB) =\ xR W 1)AR

(11.16)
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eigenstates of the [0, R,,,.] box. These two representations are related through the
unitary transformation eq. (11.3) where

2 . nr R,
=/ 11.1
U =\ N+ " N+ 1)AR (11.17)

In order to test our formulation, we present now a simple calculation aimed at
determining the resonances of the model Hamiltonian

1 d2
H=T+V = _§W+(R2—o.8)e—°-132 +0.8 (11.18)

already studied by Moiseyev et al.[132] and Korsch et al.[133], see figure 11.1.

4t

-10 -5 5 10

Figure 11.1: Plot of the one-dimensional model potential, previously studied by Moiseyev et
al.[132] and Korschet al.[133]. Note the two energy levels corresponding to the positions of the
resonances listed in table 11.1.

This system displays a string of resonances, and in order to obtain the odd ones,
one can restrict the domain of R to [0, co[, and use a basis set of functions {¢,(R)}
which all satisfy the boundary condition ¢, (0) = 0, such as the PIB of eq. (11.16).
In this study, we will focus on the lowest two odd resonances (i.e. E{t) and E5)),
see figure 11.1 for an illustration.

Two series of calculations, presented in table 11.1, have been performed. In each
case, the dimension N of the {R,} DVR has been varied while the box size was
kept at the value R,,,, = 15. In the first series, used as a reference and shown
in column 1, we employed the analytic expression of the potential and defined the
scaled Hamiltonian matrix elements in the DVR as

1 d?

(RP|F‘RP') =——¢ <Rp‘ IR?

5 Rp) + V(Rpe™®) 8,y (11.19)
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The next three columns display results obtained from a numerical continuation of
the potential V' by means of eq. (11.8) and (11.12), with

- 2 . nmRe "
(Ryn) = ,/M 7 Sin R:M (11.20)

Column 2 in table 11.1 corresponds to using a quadrature grid {R,} twice as dense
as the {|R,)} DVR, explicitly retaining in the calculation the non diagonal terms
(R,|VIR,). Column 3 differs from column 2 in that these off diagonal terms were
discarded in the calculation. Finally, column 4 also corresponds to retaining the

non diagonal terms, but using a quadrature grid identical to that of the initial
DVR.

Table 11.1: Results for the first two odd resonances of the one-dimensional Hamiltonian model,
eq. (11.18). The first column corresponds to an analytic continuation of the potential, the follow-
ing ones to a numerical continuation by a quadrature using M points. In column 3, a diagonal
definition of the DVR was enforced.

Size Analytical Numerical continuation®

N continuation?® M =2N+1 M =2N +1P M=N

18 | 1.42—i8.86(—6) | 1.42 — i4.43(—5) — ——— —— ¢ 1.42 — i5.77(—5)
18 | 2.60 — i1.83(—1) | 2.53 —i1.98(—1) 2.65 —i0.61(—1) ———— —— c

24 | 1.42 —i5.84(—4) | 1.42 — i5.87(—4) 1.37 —i1.63(—=3) 1.42 — i6.23(—4)
24 | 2.59 —i1.74(=1) | 2.59 — i1.79(—=1) 2.60 — i0.41(—1) 2.65 —i1.04(—1)

29 | 1.42 —i5.83(—4) | 1.42 — i5.83(—4) 1.37 —i1.35(=3) 1.42 —i6.21(—4)
29 | 2.58 — i1.74(—1) | 2.58 —i1.74(—1) 2.61 —i0.42(—1) 2.66 —i1.71(—1)

2 Below we have used the short notation (—z) for 1077,

PIn this column the results are listed from calculations where the off-diagonal elements of
eq. (11.13) are ignored.

¢ Resonance position unassignable.

The main conclusion which emerges from these calculations is that the proposed
numerical continuation scheme is able to reproduce the correct results, provided
the off diagonal terms (R,|V|R,) are explicitly retained in the formulation. In
fact, the M = N calculations with these terms lead to better results than those
using the dense quadrature grid (M = 2N + 1), but a diagonal V definition. As
will be shown in section 11.2, these off diagonal terms pose no problem and still
allow one to use the DVR formulation in conjunction with an adiabatic reduction
of the basis.
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11.1.3 Optimization of the DVR scheme

As shown above, a sine-based DVR allows for an easy primary description of a
complex scaled potential. This is equivalent to the very general role played by the
plane wave basis set for time dependent wave packets, due to the underlying FFT
scheme[134]. However, for a Morse potential, such as the one associated to the two-
dimensional model studied in section11.2 (see eq. (11.40b)), it constitutes a poor
representation in terms of efficiency. The reason is that the spacing between grid
points is dictated by the maximum kinetic energy allowed, which corresponds to the
bottom of the well. In the asymptotic region, where the de Broglie wavelength can
be considerably larger, one could use in principle a much broader mesh size. This is
exactly the problem addressed by the HEG method discussed in subsection 2.2.6.
To repeat, Harris, Engerholm and Gwinn (HEG)[26] have showed that if {¢,} is
some basis set, one can use the eigenvalues {R,} of the position matrix (@, |R|@m)
in order to numerically evaluate the matrix elements of any function f(R)

(nl F(R)|ow) = Upnf (Ry)Upw (11.21)

where U is the associated eigenvector matrix. It was later shown by Dickinson and
Certain[27] that this method was equivalent to a quadrature scheme of Gaussian
accuracy. The HEG method thus provides a way to define a numerical quadrature
when no analytic expression is known for the eigenfunctions {¢,}, or when it is
too cumbersome to deal with.

Analyzed in terms of the DVR, formulation, the HEG method allows for the defi-
nition of a DVR {|R,)}, conjugate to the {¢,} FBR

Rp) = Upnlon) (11.22)

which satisfies the basic relation

F(R)[Ry) = f(Ryp)[Ry) (11.23)

This property was later used by Leforestier[135] and Echave and Clary[82] in order
to define an adapted DVR to some zero-order Hamiltonian H°, the eigenfunctions
of which being precisely the {¢,} basis set as described in subsection 2.2.6.

The (R,|V|R,) matrix elements appearing in the HEG formulation can be nu-
merically continued by means of eq. (11.8) and (11.12), provided one can express
the (R,|®n,) terms. This can be realized, for example, by first computing the {¢,}
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eigenstates of interest in the primary sine basis set {|S,,), m = 1, M} conjugate to
the dense {|R,;)} DVR :

n) = Cron|Sim) (11.24)

(In order to carry on the HEG procedure, one has to truncate the {¢, } basis set,
otherwise the HEG representation {|R,)} would be strictly identical to the primary
DVR {|R,)})- The (R,|®,) terms can then be expressed as

(Rol®n) = Conn(Rg|Sim) (11.25)

- 2 . mﬂRqe’w
=4/ 11.2

Similarly, the scaled kinetic matrix elements in the HEG DVR can be computed
from those in the primitive sine {S,,} basis set

with

(RP|TR|RP') = ZUpn((pn|TR|<Pn’)Up’n’ (11278.)

nn'

= € UpnConn(Sm|Tr|Sm)Corm Upmr -~ (11.27h)

nmn’

11.1.4 Summary
With the use of eq. (11.12), eq. (11.6) can be cast into the DVR type expression

(Ry|VIRy) = eiw(ﬁp|v|ﬁ'p’) (11.28a)

= ™Y (Ry|Ry) (Ry|V|Ry)(Ry| Ry) (11.28b)

q

As discussed in subsection 11.1.1, the quadrature (involving the R, points) is per-
formed on a grid denser that the one {R,} of final interest. This equation shows
that the complex scaled matrix elements in a DVR can be obtained from the un-
scaled elements computed in a related (denser) DVR. The method we developed
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in subsection 11.1.1 allowed us to compute the (Rq|7§p) quantities by using some
intermediate basis set {p,}

(R,|R,) ZUM (Ry|%n) (11.29)

in which the backward rotation can be carried out. In the case of an equidistant
DVR {|R,)}, the {¢,} correspond to sine functions. In the HEG case, the {¢,}
correspond to numerical eigenstates of some zero order Hamiltonian H°, and one
has to perform one more step

(Ry|R,) = Z UpnConn(Ry| Sm) (11.30)

nm

in order to reach the analytic sine basis set {S,,}.

11.2 Multidimensional formulation

As discussed in detail in subsection 2.2.8, Baci¢ and Light [127] have shown that
a basis, supposed here to depend only on the two variables R and r for sake of
clarity, can be very efficiently contracted using the SAR scheme. In the following
we shall assume that the total Hamiltonian reads as

H=Tz+h (11.31)

where h = T, + V(R,r) displays no differential operator with respect to R. The
first step in the SAR scheme is to define an adiabatic basis {|®,,(R,)), m = 1, M, },
as solutions to the fixed R Hamiltonian h(R,)

h(Rp)|®m(Rp)) = Em(Rp)|Pm(Fy)) (11.32)

By using a DVR {|R,),p = 1, N} for the R variable, one can contract the initial
basis set into the new one {|®,,(R,))|R,) = |<I>$£),Rp>}. (From now on, we will

use the notation \q)(mp)) = |®,,(R,))). In this contracted basis set, the Hamiltonian
operator H displays the following matrix elements

(R,, @D | H|®P) R, = (R,|Tr|Ry ) (@D |BL)) + £D)5,,10 6,0y (11.33)

Lipkin et al. [116] have used this SAR based formulation in order to reduce as
much as possible the basis-set size prior to diagonalization of the complex scaled
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Hamiltonian matrix. In the contracted basis set, the complex scaled Hamiltonian
operator displays matrix elements given by

(Ry, @D H|®L) , Ry) = (R,[Tr|Ry) (@D [®L)) + (8D |R(R,)|8))d,y (11.34)

This formulation explicitly relied on an analytical expression of the potential
V(R,r) entering h.

Recently, this approach was extended by Ryaboy and Moiseyev[126] to the case of
a non dilation analytic potential. Analyzed in terms of the above two-dimensional
formulation, their approach would consist in first computing a matrix representa-
tion of the complex scaled Hamiltonian, h(7, R,), at fixed R, in a sine basis-set for
r, r being the dissociation coordinate. The corresponding matrix elements were
obtained by means of the identity relation, eq. (11.1), using backward scaled sine
functions ¢;(re~) and a quadrature rule. Diagonalization of the resulting matrix
lead to complex scaled ray-eigenstates {|®,,(R,))}, to be used as the basis set
for the r variable. The overall basis set was then defined as {\@%)>|Rp>}. The
formulation we propose aims at obtaining the complex scaled matrix elements in
terms of the unscaled ones as given by eq. (11.33). It will focus on the A term of
eq. (11.34), as the kinetic energy operator, Tg, poses no problem, and can easily
be treated as shown in section 11.1.

11.2.1 General formulation

Starting from the expression (see eq. (11.32))
h=3 1®u(R)En(R){Pm(R) (11.35)

one can write
(RplhIRy) = 6_i6(7€p|h|ﬁ’p’) (11.36a)
= S Ry ®n(R)En(R) (@ (R)} [Ry)  (11.36D)

In the this expression, the terms between brackets {...} can be considered as a
function of R. As discussed in subsection 11.1.1, one should evaluate the integral
over R by using a quadrature scheme defined on a grid {R,, ¢ = 1, M} denser than
the DVR {R,,p = 1, N} of interest. This can be realized by using twice the closure
relation 1 = Zf}w |R,){R,|, leading to the equivalent form

(Ryplh|Ry) = e " Z(ﬁp|Rq)|(I)%)>gr(rg)|¢%)>(Rq|ﬁp’) (11.37)
mq
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One finally obtains for the matrix elements of % in the {|®2, R,)} basis-set as

m!

(Ry, OP[RIOL), Ry) = e > { (Ry | Ry) (@8] 02)
m’q (11.38)
x £9(9')

o0\ (R,|Ry) |

This expression forms the central working equation in our method. Eq. (11.38) is
quite general, and demonstrates that multidimensional matrix elements expressed
in a contracted basis set can be numerically continued for complex scaling calcu-
lations. As emphasized before, the off diagonal terms of h have to be explicitly
retained in the formulation. Tt should also be noted that the actual definition of the
DVR chosen for the dissociation coordinate R only appears through the (R,;|R,)
terms (see eq. (11.29) and (11.30)).

We shortly discuss now the computational cost of this formulation. The overlap
terms <<I>$,€)|<I>£Z,),> appearing in eq. (11.38) are also required in the original formu-
lation, associated to the kinetic operator matrix elements (see eq. (11.34)). As
a consequence, they do not lead to any new calculation. The extra cost comes
uniquely from the necessity to use a denser grid {R,} in order to perform the
numerical continuation. This, in turn implies to perform the ray-eigenstate calcu-
lation on this dense grid associated to the adiabatic variable R. As will be shown
in subsection 11.2.2; the computational effort typically increases by a factor of 1.5
due to this preconditioning step, when compared to the hypothetical case where
an analytic expression of the potential is available.

11.2.2 Application to the Eastes-Marcus model

As a way to check the new formulation in a multidimensional case, we applied it to
the well studied Eastes-Marcus model[129,130]. It can be viewed as representing
a dissociative collinear triatomic molecule

[ABC]* — A + BC(v) (11.39)

and consists in an harmonic oscillator (BC) coupled to a Morse potential (A-BC)

H = —18—2—8—2+ 2L V(R-7) (11.40a)
- Tuor? o' " '
V(z) = D(exp[—az]—1)>=D (11.40Db)

p = 0.2 a=0.05 D=15 (11.40c)
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A plot of the potential energy function in the Eastes-Marcus model, cf. eq. (11.40),
is shown in figure 11.2.

V(r,R)

Figure 11.2: Plot of the two-dimensional model potential by Eastes-Marcus.

As a prelude to a zero-order description of the resonances we partition this Hamil-
tonian into the small perturbative term h = V(R —r) — V(R) and the zero-order
Hamiltonian

2 2

_ - 2
=@ o’ +V(R) (11.41)

Thus, the zero-order eigenvalues are simply the sum of the harmonic BC oscillator
eigenvalues, 2v + 1, and the Morse oscillator eigenvalues[136],i.e.

E® =20+1-a*(a—n—1/2)*/u (11.42)
where a = /uD/a, and 0 <n < a — %, which with the parameter in eq. (11.40c)
implies that the Morse potential supports 10 bound states. In figure 11.3 and 11.4

we have shown illustrations of the formation of the two lowest resonances in the
zero-order description of the Eastes-Marcus model, just outlined.
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Format,
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Figure 11.3: Zero-order illustration of the formation and decay of the first Feshbach resonance
listed in table 11.2, ¢f. eq. (11.42) for Ef?g = 1.63. The left array of plots shows the initial
situation with an excess energy in the translational degree of freedom and the ground vibrational
level populated. The right array of plots shows the zero-order description of the resonance state
where the ground state of the Morse potential and the first excited level of the harmonic oscillator
is populated.

According to the SAR scheme by Bacié¢ and Light[127], one first preconditions the
basis set by computing the adiabatic solutions at fixed R, values

2
(=g + DA™ 1 Dt o) =000 (11
r
This first step has been realized using a DVR {|r;)} for the BC-oscillator
o) =3 _Cilin) (11.44)

This procedure allows for a simplified calculation of the overlap terms (@%)@g?)
entering eq. (11.38) as

(@B = Cinlom. (11.45)
The final two-dimensional basis set reads as {\@%), R,)}, where {|R,)} stands for
the HEG representation. As discussed in subsection 2.2.6 and 11.1.3, it was ob-
tained by diagonalizing the R operator in the truncated basis set of the eigenstates
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Format
2 T 1 2 v 1 2 T 1 2
3 n = 1 3
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Figure 11.4: Zero-order illustration of the formation and decay of the second Feshbach resonance
listed in table 11.2, c¢f. eq. (11.42) for E£01) = 1.88. The left array of plots shows the initial
situation with an excess energy in the translational degree of freedom and the ground vibrational
level populated. The right array of plots shows the zero-order description of the resonance state
where the first excited level of the Morse potential and the harmonic oscillator is populated.

{#n(R)} of the following Hamiltonian

A 1 02 2
h=—-=—o+D{e**-1} —D. 11.46
L Do) (1146
We also made use of a uniform DVR {|R,)}, as the working basis set to express
the eigenstates {¢,,(R)}, as well as the dense DVR appearing in eq. (11.38).

We present in table 11.2 a comparison of the first two resonances as computed ei-
ther by analytic or numerical continuation of the potential. While using always the
same box size (—20 — 150) for R, different grid dimensions have been employed,
corresponding to an increasing accuracy on the resonance widths. First, one can
remark that the resonance positions are fully converged to a 6 digit accuracy in
both sets of calculations. As could be expected, the widths obtained by analytic
continuation converge first (N = 40), but the results coming out of the numerical
scheme display a relative error of only 5% for the same grid size. The important
point is that by increasing the dimension of the scheme, the numerical results even-
tually converge onto the exact ones, as shown in the table. The accuracy needed
in the calculations of molecular resonances will be further addressed below, in the
next section.



188

Numerical complex scaling

Table 11.2: Comparison of the characteristics of the first two resonances of the Eastes-Marcus
model, as obtained by either an analytic or numerical continuation of the potential. M = 2N +1
denotes the size of the dense grid, where N is the size of the truncated HEG grid. A zero-order

illustration of formation of these resonances are given in figure 11.3 and 11.4.

DVR size M =N M =2N +1
Analytical continuation® Numerical continuation?

N =30 1.63901 — i2.2(—7) 1.63901 — ¢1.7(—7)
N =30 1.88703 — i1.2(—6) 1.88703 — i6.9(—7)
N =40 1.63901 — i2.0(—7) 1.63901 — ¢1.9(—7)
N =40 1.88703 — i1.0(—6) 1.88703 — i9.7(—7)
N =50 1.63901 — 42.0(—7) 1.63901 — i2.0(—7)
N =50 1.88703 — i1.0(—6) 1.88703 — i9.8(—7)
N =60 1.63901 — i2.0(—7) 1.63901 — i2.0(—7)
N =60 1.88703 — i1.0(—6) 1.88703 — i1.0(—6)

2 Below we use the short notation (—z) for 10~*.

Finally figure 11.5 and 11.6 show plots of the complex energy trajectories for re-
spectively the analytical and numerical continuation of the Hamiltonian, both em-
ploying 50 HEG grid points. First of all we note that both figures are in excellent
agreement with the Balslev—Combes[110] theorem illustrated in figure 9.3. Sec-
ondly we note that with the exception of some of the continuum states the plots
are completely identical as expected. The slight perturbation of some of the con-
tinuum trajectories in the numerical continuation, we believe is an artifact from
the sine basis-set for large values of the rotation parameter §. However, this is of no
importance in the present context as we are only interested in the exact location
of the bound and resonance states, and furthermore the continuum trajectories
display the correct overall behavior.

11.3 Conclusion

We have presented a new procedure which allows one to numerically complex con-
tinue the matrix elements of any real Hamiltonian operator expressed in a Discrete
Variable Representation. One thus avoids the need of a global analytical expres-
sion of the potential, and can use instead a piecewise one, such as the spline
interpolation method. When applied to the multidimensional case, one can first
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Resonances
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Bound states l l l J l
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Figure 11.5: Plot of complex energy trajectories for the analytical continuation.

Resonances
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Figure 11.6: Plot of complex energy trajectories for the numerical continuation.
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precondition the basis-set, using Ba¢i¢ and Light SAR method[127] with the real
potential, and then numerically continue the resulting matrix elements. It consti-
tutes an extension of the method initially proposed by Moiseyev and Corcoran[124]
to a multidimensional DVR type basis-set. Its interest stems from the fact that
the SAR method produces an optimum contracted basis set in order to handle
molecular systems. Also, it allows the dissociation coordinate to be treated by a
grid adapted to the variation of the de Broglie wavelength, by means of the HEG
method|[26].

We now address the accuracy achieved by our numerical procedure on the Eastes-
Marcus model. Considering the minimal basis set size (N = 40) which leads to
converged results when using an analytical continuation of the potential, the reso-
nance positions come out with a 6 digit accuracy through numerical continuation.
However, the associated widths display a relative error of approximately 5%. We
would first like to point out that in most cases, such a precision is amply sufficient
for numerical molecular potentials, as those obtained from ab initio calculations.
In fact, the intrinsic errors due to such potentials can be expected to overwhelm
those associated to the numerical continuation procedure. A second point concerns
the fact that this numerical scheme is well behaved. By increasing the number of
points used, the results eventually converge onto the exact ones.
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In this last part of the thesis we have studied resonances employing two different
complex methods. In chapter 10 we successfully used the optical potential method
(OPM)), originating from Jolicard and Austin[117], for the calculation of resonances
in the system of H"+QO, described in the framework of the Infinite-Order Sudden
approximation. Next, in chapter 11 we presented a new numerical approach to
the calculation of resonances using the exact complex coordinate method (CCM)
on systems where no analytical expressions for the potential energy function exist.
Subsequently we successfully tested this “numerical complex scaling of a discrete
variable representation” on respectively a one and two-dimensional model system.

In these studies we found that both methods have their distinct pros and cons.
The OPM was fairly easy to setup and implement using existing numerical tech-
niques like the DVR, HEG and SAR schemes, discussed in detail in section 2.2.
However, due to the approximate nature of this approach, which steams from the
unphysical perturbations of the system caused by the imperfectness of the added
optical potentials, tedious convergence tests seem unavoidable, where the different
parameters entering the definition of this potential are varied. We also observed
that these perturbations could lead to spurious complex energy trajectories, which
behaved like resonances for certain values of the amplitude parameter, but actually
tuned out to correspond to continuum states once the convergence test was per-
formed. Thus, the biggest disadvantage of the OPM sums up in the fact that unless
extensive convergence tests are performed one is not guaranteed to get the “cor-
rect” behavior of the energy trajectories, which in turn makes the visual inspection
difficult.

This problem was not observed when employing the numerical complex coordi-
nate method presented in chapter 11. This, of course, is due to the fact that the
method is based on the mathematically rigors Balslev—Combes theorem[110] (cf.
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Figure 12.1: The optical potential method on the Eastes-Marcus model[129] studied in subsec-
tion 11.2.2.

eq. (9.13)). This point, I think, is clearly illustrated when figure 12.1, showing the
results from a single OPM calculation® on the Eastes-Marcus model[129], studied
in subsection 11.2.2, is compared to the corresponding figure 11.6 employing the
numerical complex coordinate method. Figure 12.1 does clearly not display the
“correct” behavior of the complex energy trajectories (cf. figure 9.3 and 11.5), as
observed in figure 11.6. Some of the resonances and bound states behave as con-
tinuum trajectories, being constantly rotated into the negative imaginary energy
plane, and the indication of the threshold energy has vanished. In fact the plot
shows that the convergence is restricted to a narrow energy window around reso-
nance F o, corresponding the energy domain covered by the optical potential with
the specific choice of the parameters in that calculation. However by change these
potential parameters the energy window can be shifted to other domains of inter-
est, leading to the correct width of other resonances. In contrast, the numerical
complex coordinate method, presented in chapter 11, in principle covers the whole
energy range in a single calculation, thereby making it more convenient.

However, the numerical complex coordinate method also has its drawbacks. First
of all the numerical implementation is more involved, at least as compared to the

'For this calculation I used the same implementation of the OPM as used in the study of
resonances in Ht+0,.
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Figure 12.2: Numerical complex scaling on the system of HT+05 studied in chapter 10.

OPM. This is of course a minor detail, but in terms of popularity it could certainly
play a role. Secondly it is more computationally demanding, due to the necessity
to use a denser grid in order to perform the numerical continuation. However,
two important points should be stressed in connection to this apparent computa-
tional disadvantage as compared to the OPM. As we do not need to perform any
additional convergence tests in the complex coordinate method it is actually my
experience that the extra CPU time makes up for the obligatory convergence tests
in the OPM. Furthermore, as my supervisor use to put it, “there is no free meals in
quantum dynamics”, which of course in this context means that you don’t go from
an approximate description (the OPM) to an exact one (the CCM) without paying
a price in terms for increased computational efforts. The fact that the CCM is
in principle an exact method however also adds other “problem” to this method,
namely the extreme sensitivity of the overall scheme to the nature of the system.
This is clearly not an artifact of the CCM, but merely steams from the fact that the
position of resonances are in general very sensitive to the curvature of the involved
potential energy surfaces. Nevertheless I mention this as a limitation of the CCM
for the following reason: When I first started to develop the method of numerical
continuation, in corporation with Claude Leforestier, the motivation was actually
to employ this exact method on the study of resonances in the H"+0, system.
After the method had been thoroughly tested, as described in chapter 11, we were
quite surprised and disappointed to discover that the method did not produce any
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resonances at all for the H"4+0O; system. This should be clear from figure 12.2
where a plot of the complex energy trajectories for a numerical complex scaling
calculation on HT+0O, is shown. The plot shows the correct behavior for the contin-
uum trajectories, and the location of the threshold energy (i.e. the bound states),
but no resonances are found. We are almost certain that the explanation for this
should be found on the potential energy surface for this system. The problem
with this potential, as was also noted in section 10.2, is the cut-off of the surface
of reference [122] at 7., = 2.9 au, see figure 10.2. This artifact of the potential
is clearly transfered to the definition of the vibronic adiabatic basis-set, which is
subsequently used in the numerical representation of the complex Hamiltonian.
In the numerical continuation of matrix elements we exactly backward scale these
perturbed basis functions, and it is very likely that the perturbation from the ar-
tifact of the surface is amplified by this complex rotation, thereby removing any
traces of the resonance states. This would also explain way on the other hand the
OPM does in fact work on this systems, as this method merely adds an extra (neg-
ative imaginary) potential to the asymptotic region of the Hamiltonian, leaving the
basis-functions unscaled. Thus, not only do both methods have their distinct pros
and cons, it also seems to be the case that situations may emerge where only one
of the two can actually do the job, thereby making the methods complementary
rather than competitive.

In this thesis we have only employed the two complex methods in up to two degrees
of freedom, and the natural question would of course be to ask how the schemes are
changed as one moves to larger dimensionality. In the present implementations of
the two schemes we used standard complex eigenvalue routines for the diagonaliza-
tion of the non-Hermitian Hamiltonians, but as more degrees of freedom are added
to the system this will quickly turn out the be computationally impossible simply
due to the exponential increase in the size of the involved matrices. As discussed
in subsection 4.1.4 the Lanczos algorithm is a very powerful technique to selec-
tively calculate eigenvalues of large matrices. However, a direct application of the
Lanczos recursion scheme on the non-Hermitian Hamiltonian would generally lead
to very slow convergence due to the fact that the Lanczos algorithm can be shown
first to display the eigenvectors in the sparse part of the spectrum (cf. eq. (4.18)),
whereas resonances are most often located in the dense part of the spectrum. The
solution to this convergence problem is to first perform a spectral inversion of the
complex Hamiltonian, by defining a new operator, derived from H, which inverts
(i.e. makes sparse) the desired dense spectrum in the eigenvalue domain of inter-
est. Different operators can be used for such a filtered Lanczos algorithm, but
the Green’s function, (E — H) ! where F defined the energy window of interest,
is probably the most popular choice. However, the use of the Green’s function
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Figure 12.3: The numerical complex scaling on the model system studied in section 6.2.

raises another problem, namely how to compute it, without having to do a direct
matrix inversion of £ — H, which is clearly out of the question due to the large
dimensionality if H. A very efficient way to compute the Green’s function is to rep-
resent it by a recursive polynomial expansion, where knowledge is only needed for
the action of the Hamiltonian operator on a state vector. We actually showed an
example of this in subsection 4.1.3 where the evolution operator was represented
by a Chebychev polynomial expansion. However, because the Hamiltonian is now
non-Hermitian we cannot in general scale the spectrum of H to [—1, 1] as is always
the first step in a Chebychev expansion of an Hermitian operator (cf. eq. (4.10)).
To my knowledge there now exist two different types of strategies to overcome
this problem. The obvious one is to employ another type of polynomials which do
not put the same restrictions on the eigenvalue spectrum of H as the Chebychev
polynomials do. Thus, one can alternatively use Newton polynomials[137,138] or
so-called Faber polynomials[139]. If however one insist on employing a Chebychev
expansion a very clever solution has recently been but forward by Mandelshtam
and Taylor[140, 141], where instead for expanding the non-Hermitian Hamiltonian
directly, one employs a modified Chebychev expansion scheme on the unscaled
Hamiltonian, by incorporating the optical potential as a damping factor into the
the recursion scheme itself. Hence, this approach is formally equivalent to the
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Figure 12.4: Closeup of the resonance shown in figure 12.3.

OPM, and cannot be used in the framework of the CCM.

Finally, I would like to very briefly point out the connection between the two
parts for this thesis. As mentioned before we actually observed clear evidence for
the formation of resonances in both of the numerical studies in part II. Thus,
to emphasize this connection I have shown plots of the complex energy trajecto-
ries obtained from a numerical complex scaling of the model system studied in
section 6.2. Figure 12.3 clearly shows that the system supports a single resonance
in the energy domain investigated, and the closeup in figure 12.4 reveals the exact
location of the resonance which is in excellent agreement with the peak observed
in figure 6.2.

As a closing remark I would like to repeat what was stressed in the very beginning of
this thesis. All of the work presented in this thesis is, in one or another way, based
on the work of others, and neither me, nor my coworkers, can of course take the
credit for the development of the MCTDH or complex-scaling methods. However,
we have presented extensions and numerical reformulations which we believe have
added extra values to these methods. Whether this is in fact true or not is naturally
up to the scientific community to judge. Whatever the judgment might be, the
overall motivation for the work presented in this thesis nicely summarize in the
following motto

Join those who seek the truth - but be on guard against those who
claim that they have found it!
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Abstracts of publications

Below is a list of the abstracts for the publications on which large parts of this
thesis is based. They are not listed in chronological order, but rather in the or-
der of appearance in this thesis. Two of the papers (A.4 and A.1) have already
published and a third (A.3) has been submitted to an international journal. The
last paper (A.2) is still under development, and it is as yet undecided if it should
be split into two separate publications. For the two published articles a small
erratum is included, but we emphasize that most of the corrections are simple
typographical mistakes (some of them actually introduced by the journal in the
process of typesetting the paper), and non of the corrections change the results
and conclusions made in these papers. Finally we also hope to publish the Gaus-
sian MCTDH scheme described in section 5.2. However, as we (G. D. Billing and
I) are still struggling with the numerical instabilities resulting from the employed
non-orthogonal basis-set, this is still “work in progress”. Hence an abstract is not
included below for this project.
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A.1 Generalized MCTDH

Generalization of the Multi-Configuration Time-Dependent
Hartree method to non-adiabatic systems.

Ken Museth and Gert Due Billing
Department of Chemistry (Lab. III), H.C.Orsted Institute
University of Copenhagen, DK-2100 Copenhagen ), Denmark

Journal of Chemical Physics Vol. 105, page 9191, 1996
Running title: Non-adiabatic systems in the MCTDH framework

We present a generalization of the MCTDH scheme, originally introduced by
Meyer, Manthe and Cederbaum, Chem. Phys. Lett. 165, 73 (1990), to a general
non-adiabatic system. In the course of deriving the extended working equations a
new compact notation is introduced. Subsequently the equations of motion are ap-
plied to a one-dimensional two-surface model system. Calculated energy-resolved
transition probabilities for the model system, treated in the MCTDH framework,
are shown to be in exact agreement with direct numerically “exact” calculations,
using a Split-operator propagation scheme. Finally a comparison is made between
the convergence and the consumed CPU-time for the two methods. The two nu-
merical formulations of the scattering problem employ respectively a DVR and
a FFT collocation scheme. The use of negative imaginary potentials to remove
artificial boundary effects in the two schemes are also comment upon.

Erratum:

O In equation (5) N, — N.

O Equation (9) should read as eq. (6.13).
0 Equation (10) should read as eq. (6.14).
U

The text between equation (18) and (19) should read as: “For the single-
particle functions we are going to make the same assumption as previously
make by Jickle and Meyer (see eq. (14) and (17) in reference [75]). Thus,”

|

Equation (13) should read as eq. (6.26c¢).
O Equation (A4) should read as eq. (6.21).
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A.2 Two-dimensional non-adiabatic MCTDH

Non-Adiabatic study of H, on Cu(100) by the Multi-
Configuration Time-Dependent Hartree method.

Ken Museth, Christian Laursen and Gert Due Billing
Department of Chemistry (Lab. III), H.C.Orsted Institute
University of Copenhagen, DK-2100 Copenhagen (), Denmark

This paper is under preparation and will be submitted to the Journal of Chemical
Physics shortly.

We present a non-adiabatic study of dissociation of Hy on a Cu(100) surface us-
ing an extension of the multi-configuration time-dependent Hartree method recent
proposed by Museth et al. in J. Chem. Phys. 105, 9191 (1996). The calculations
include the two lowest diabatic electronic surfaces, which are constructed from an
EDIM-potential suggested by Truong et al.. In order to exploit the full advan-
tages of the multi-configuration time-dependent Hartree formulation, these poten-
tial energy surfaces are approximated in a product representation of the involved
coordinates. The dynamics is confined to a two-dimensional treatment for the re-
active subsystem by quantizing the vibrational and the translational coordinates
of the hydrogen molecule relative to the metallic surface. The non-diabatic formu-
lation of the multi-configuration time-dependent Hartree method is tested against
an “exact” time-dependent scheme employing the FFT transform method in the
framework of a split-operator. From this comparison we show in this work that as
the number of configurations are increased the multi-configuration time-dependent
Hartree method results do indeed converge to the exact solution.
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A.3 Resonances in H"+0;, by the OPM

On the optical potential method as a generalized scheme to
locate molecular resonances: Calculation of Feshbach reso-
nances in the electronically elastic H"+0,(X?% ) collision.

Ken Museth
Department of Chemistry (Lab. III), H.C.Orsted Institute
University of Copenhagen, DK-2100 Copenhagen ), Denmark

Claude Leforestier

Laboratoire Structure et Dynamique Moléculaires (UMR 5636), CC 014
Université des Sciences et Techniques du Languedoc

34095 Montpellier Cédex 05, France

Danielle Grimbert
Université de Cergy-Pontoise, 5 Mail Gay-Lussac
Neuville s/ Oise, 95031 Cergy-Pontoise Cédex, France

Victor Sidis Laboratorie des Collisions Atomiques et Moléculaires
Université Paris-Sud XI, 91405 Orsay Cédex, France

Submitted to the Journal of Chemical Physics May 1997
Running title: Resonances in the elastic HF+O5 collision

The optical potential method is reviewed here with special emphasis on the avail-
able techniques used to isolate and verify molecular resonances. We next present
calculations of Feshbach, resonances in the framework of the Infinite-Order Sud-
den approximation, of the electronically elastic Ht +04 (X 32;) collision. In this
approximation the relative angle between the oxygen molecule and the incom-
ing proton is kept fixed thereby reducing the problem to a two dimensional one.
The investigated energy domain of the resonances is below the channel energy for
the first vibrational excitation (0.2eV). The optical potential method, used to
characterize the resonances, applies a negative imaginary potential (NIP) in the
asymptotic region of the electronic potential energy surface. The positions and
widths of the resonances are given as respectively the real and imaginary part of
the stationary complex energies with respect to variations of the amplitude of the
NIP. The overall numerical scheme is an optimized discrete variable representation
of the complex integrals involved. The calculated resonances are finally compared
to previous two dimensional calculations obtained by Grimbert et al., Chem. Phys.
Lett. 230,(1994), p. 47-53.
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A.4 Numerical complex scaling

On the direct complex scaling of matrix elements expressed
in a discrete variable representation: Application to molec-
ular resonances.

Ken Museth
Department of Chemistry (Lab. III), H.C.Orsted Institute
University of Copenhagen, DK-2100 Copenhagen ), Denmark

Claude Leforestier

LSD SMS (UMR), CC 014

Université des Sciences et Techniques du Languedoc
34095 Montpellier Cédex 05(France)

Journal of Chemical Physics Vol. 104, page 7008, 1996
Running title: Complex scaling of a DVR

We present an application of a method initially proposed by Moiseyev and Corco-
ran (Phys. Rev. A20, 814 (1978)) to a direct continuation of the matrix elements
of a real Hamiltonian operator expressed in a contracted, Discrete Variable Rep-
resentation type basis set. It is based on the identity which relates the matrix
elements of a complex scaled potential between real basis set functions to those
of the unscaled potential between backward scaled basis functions. The method is
first applied to the study of the resonances of a one dimensional model by means
of complex scaling. It is shown that the resulting matrix elements of the scaled
potential are no longer diagonal in the DVR. This paradox is discussed and shown
to be of no practical consequence in the formulation. The scheme is then extended
to the direct complex scaling of a two dimensional Hamiltonian operator expressed
in a contracted basis set built through the Successive Adiabatic Reduction method
of Baci¢ and Light. Results show that, due to the use of a numerical continua-
tion, slightly larger grids have to be used as compared to the case of an analytic
continuation where the potential is available.

Erratum:
O In equation (3) the summation index should be changed to p.

[0 The caption for table 2 should also mention that M = 2N +1 where M is the
size of the dense grid, and N that of the truncated HEG grid, see table 11.2.
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