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1. INTRODUCTION =~ | e&

\ &
With Antarctica b'éﬂg he exception,’ most of the world is visible in the map projection used in the emblem
of the United Nations. This map, painted in white on light blue background and centered at the North . i
Pole, is perhaps the most well known example of the so called azimuthal equidistant map projection. This \e/\'\@) l’\
projection technique preserves angles and geodesic distances, from the base point on the North Pole to points
in 2.111 direc‘Fion§ up to a cert.ain radius, making i.t useful to. e.g. radio gmateurs and airline travelers. 6’ ot P}zﬂmfo/’\
This mapping is also a special case of the logarithm function or logarithm map, log map for short, defined
on a surface embedded in space, or more generally a N-dimensional manifold. Given a basis for the surface
tangent plane, at the base point for which the map is centered, the log map describes a coordinate system.
These coordinates can directly be used to parametrize the surface, e.g. for decal compositing, or local texture
mappingyand they are natural in the sense that geodesics emanating from the base point are mapped to
straight lines.

The exponential map, as shown in figure 1, maps vectors z in the tangent plane of the base point p, denoted
1,5, to points  on the surface S along geodesics. The Hopf-Rinow theorem states that if the closed and
bounded subsets of S are compact, then exp,(x) is defined for any = € 1,5, i.e. it is geodesically complete
[do Carmo, 1992]. The log map, denoted log, (), is the inverse of the exponential map and takes points
from the surface S to the tangent plane T,S. It is always defined for geodesically complete surfaces and is
furthermore uniquely determined within a certain radius of injectivity from p. The relations between these
two maps esg=be=seen in figure 1. Note in particular that the log function can be used to generate a local
coordinate systg{n for points on the surface by equipping T,S with a suitable basis. Choosing an orthonormal
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Fig. 1. Left: The log function is the inverse of the exponential map. Right: The log map can directly be used for local
parametrization exemplified here with decal compositing.

basis yields the Riemannian Normal Coordinates (RNC). MQ(J

Parameterizations of data by numerically estimating the log fu}u&ion was, to the best of our knowledge, first
fn H,\ e proposed-for=ase-in manifold learning [Brun et al., 2005]. It W}g&ﬁw ( , é
et X\C data points sampled from a manifold. The method — napﬂad LogMap — was based on numerical estimation X (4 (3 Q@J
e of gradients to an estimated geodesic distance function. In this paper we present a straightforward and

modular way of TSing the LogMap method, together with accurate distance estimates, to compute local
texture coordinages for a triangle mesh, as shown in figure 1

to aFP(J U urhere W\(](\[ji“ rtgf,\fp)_

1.1 Contributions . &

. CqetFi &ﬂ‘r“n;/\. of ~© t’ ‘“d acCarcale : ) .
The main F’ES%M{thlS paper is demonstrate a fast"algorithm for computing local parametrizations,
with decal compositing as the main application.

2. PREVIOUS WORK

A lot of research has been devoted to parametrization and finding suitable texture coordinates on\trlan—
gulated mesh Optimization for minimal area/angle distortion have been key instruments to evaluate the
generated parametrizations. See for example recent surveys [Floater and Hormann, 2005; Sheffer et al.,
2006]. These approaches are in a sense global, and typically parametrize the whole surface. In this work we
take on a different approach and look at a local parametrization that is@‘geometry aware.

Recent work in manifold learning has influenced computer graphics. Especially techniques for finding
parametrizations of a set of data points, which are assumed to lie on a low-dimensional manifold embedded in
a possibly high-dimensional Euclidean space. Well known methods, for instance Locally Linear Embedding
(LLE) [Roweis and Saul, 2000] and Isomap [Tenenbaum et al., 2000] have been used in texture mapplng
apphcatlons [Peyré and Cohen, 2005]. One of the earliest examples of manifold learning, w d
JS‘ he Self Organizing Maps [Kohonen, 1982]. It is an iterative and relatlvely slow
procedure for adapting a low-dimensional mesh to a set of data points. Nowadays the term manifold learning
is almost synonymous to efficient algorithms. They usually achieve computational efficiency by solving a
large and sparse eigenvalue problem, ojr they guarantee/by other means’that the solution is unique and can

be obtaified quickly. C ompo {i,i(.\

In this paper we focus on a technique that is related to both differential geometry and to manifold learn-
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ing. In [Brun et al., 2005/ the LogMap method was originally presented as a means to estimate RNC in

a manifold known only from a discrete set of samples, possibly embedded in a high-dimensional Euclidean

space. An approach, calfted ExpMap [Schmidt et al., 2006], with a similar goal has also been suggested for

texture parametrizatioh of 2D surfaces. Both methods are-sifnilirly based on geodesics on the surface,and

as such the resulting parametrizations are approximations of logp(:z:). The main differences between the )( ) @)
LogMap and ExpMap isthe fact¥the latter is specialized for 2D manifolds and builds-upon reaseming about CALri»
_hewthe 2D surface is curved %nd emb(:,,d_ded in 3Ip. Furthermore ExpMap is not r%')ée{l\ to be convergent %I‘Q

and it in Ces approximatjons”i fons assumﬁ'ﬁg\thét the surface &’ ‘goor developablejat

least locally. The ExpMap method also shares many similarities with another method fof manifold learning

called Riemannian Manifold Learning [Lin et al., 2006], which also aims at estimating RNC. The LogMap ﬁ\ .

on the other hand is a convergent method that largely focuses on intrinsic characteristics of the manifold € < bﬂlﬂ
and inherits much of its power from the choice of algorithm to calculate geodesic distances. q\{. 0 5“0’7 ‘;r

atupl  propozd by o 3D

Another method that focuses on geodes\@s distances is'[Shapira and Shamir, 2009]. This method finds a sth
local disc (with seems if necessary) and tpfes to preserve geodesic angle and distance at the perimeter and

subsequently use Floaters mean-value coordinates to find a parametrization. Although local ,the method

still puts more emphasis on the boundary than the center of the disc, which is inv?rse to both LogMap and

ExpMap, and consequently this parametrization is not an approximation of RNC. % = -ll-

con lar)

2.1 Computing Geodesic Distance —_ ( .
o M{?/ﬂi@% JL@LA

The eikonal equation governing geodesic distance has important applications in many fields.

/ l’] e’\éeismology, optics, computer vision, and medical imaging and analysis. A popular algorithm for solving the Ol Q(er
its N

ikonal equation is Sethian’s fast marching method [Sethian, 2001] (FMM). When used on triangular meshes

’ ({ = this method -although-first-order-accurate; FMM (and siblings) assume linear interpolation of distance values ’(X Can, 4{5\6
@A e r QSN along edges resulting in linear wavefronts. This introduces a triangulation dependent relative error as large 6@ IZI\J
R 2 N 20% f bl hes. / ¢ n ¢ o Z [ ] Qﬂél/‘
rem oA ﬂ/\{/) as % for reasonable meshes. W/hg /2 do dQu %UQ ﬂ it buméer /Dﬂ i R‘i?’fﬁi;

To amend for this% [Reimers, 2004] introduced a method with Euclidian precision: Its nonlineéh’ . l
updates makes a strict one-pass algorithm impossible since new values are not guaranteed to only depend (/J'\u{( e %
on smaller values. Thus, the run~time complexity is not bounded. In practice Reimers’ method performs Y peéna f-
comparably to FMM with respect to running times. The convergence is first order and independent of

triangulation. Reimers’ method is furthermore faster than the exact version of [Surazhsky et al., 2005] which

is O(n?logn), and shows similar accuracy to their approximatelVersion. Reimers’ method also uses much

less memory and is easier to implement. MM - ﬂa 'Z?,\"h./\ "%ch N M_,‘ -ﬂ\g
3. THEORY ot @({ MArerca ( X/Lepagj (

3.1 The Jacobian and the metric & (()(0’4% W‘ﬂ\eu ‘& f_‘jc"ik(‘/ncﬂ?n"{; ‘(Qq(i%i Hi:jq(')

The relation between the Jacobian of the mapping, and the metric expressed in texture coordinates is-easy.

f‘)_i;e—der-ixa Let A be a 2 x 3 matrix and b a 2—vectorf, mapping a surface triangle to texture coordinates.

p r ; /

N&seel u=Ax+b '\ Your é[\ﬁuk\ qls coff«’bte u
The scalar product, inherited from the 3-D Euclidean space, between two vectors u and v in texture coor-
dinates is then

(u,v) = (A7 u,A7'v) =u"(AAT) v
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G= (AAT)—l. (1)

3.2 Local properties of Riemannian normal coordinates

Riemannian Normal Coordmates have certam propertles that make them suitable for local calculations in

differential geometry, whieh=we=wil 7. In 2-D, some of the most 1mportant are (adapted
from [Lee, 1997)): - ,

o i
(1) The coordinates of p are (0,0). P (Q‘ ey

(2) A geodesic starting at p with velocity v is described in RNC by

W (t) = (tvr, tve), (2)

where t is the time variable.

=

(3) The metfi/c&_t/}}e unit matrix in the origin\’_‘ /5 (/\sb—% Oé Giowy M ﬁ‘l ca ﬂ:) a M{Vl-(" re{eﬁ
Gl) oty - [}, ). ®

(4) The first partial derivatives of the metric vanishes at p. ( well ﬂd‘é’ ‘p"fﬂvg olisious 3’:0(’/\ ZJ . )

2419 9]. 4
de&w\e v o !f [0 0]

(5) Any Euclidean ball in U is a geodesm ball in Mk Cﬂéf\FW\Q M (W\C‘l/\u Q1 )

) \&e‘mc( ace &_— i s f/ 5( rCcTGA«,( C{CV'(G!CT/U‘Q”
(6) At any point qin U-p, d/dr is the veloc1ty vector of the unit speed geodesic from p to q, and therefore

has unit length with respect to w/—’ J Oﬂt &A heay 6 2 bl 1
 From Eq. 3 and Eq. 4 we can derive a Taylor approximation of the metric tensor in RNC at p, r = J(! N

10
- G(u) = [ ] + O(||u|[*), when u — 0. (5)
oy, ( )
> g Onclalisn” g
/‘\/_-—
a the. The g@}e@om O(||u|?) is matrix-valued, meaning that the components of the metric are constant close
(/f , up to a second order variation. However, these properties are not unique to the L [( qu
o‘vﬂer V\GM?f deﬁnlng a mapping that makeSa perpendicular mapping from the surface to the tangent plane close
will have the same asymptotic behavior. Next we will therefore investigate the second order term of the i (}ﬂlé—é—

metric in RNC. %

3.3 Local behavior of LQb'@AP

p roXiu ktq-(hm /AN _

A second-order Taylor expdision of the metric in RNC is ﬂ s é@

10 1 0’G
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Due to the special properties of RNC, the second order term can also be expressed using the Riemannian
curvature tensor R;qjp [Brewin, 1996],
]
' 1 8°G 1
L — _ZRi. . 7
}( 20udy 3 9P @

In general the Riemannian curvature tensor has n?(n? —1)/12 degrees of freedom, which for surfaces (n = 2)
amounts to only one. E/kpressed using the Gauss curvature, K, its components are

Ao ¢ Qs M&@an M{i = K (gacgdb — Gadgeb) (8)

GCW"K(O‘V\ which for the particular case of RNC, where the metric is the unit matrix, yields R2121 = Riz12 = K,
ca ‘—Q\\T—R 7 Roi12 = Ri221 = —K and all other components are zero. Inserted into Eq. 7 and Eq. G*Kﬁnally gives %

fopagila s
5CUJ\_Q Cm’“/]ﬂ,\j L%dﬂf

1 0 T _K'U.zu Kuzul 3
ORI P R i il PRI MO R

In global texture mapping, various measures of local texture distortion have been deﬁned based on the

j é Jacobian of the function f : R? — R® mapping texture coordinates to 3-D coordinates. This Jacobian is
related %o the metric in the texture coordinates by G =(J;"J;. A deviation of the metric from the unit
N matrix _I}Mlat the mapping is distorted in relatio to the'metric inherited from the 3-D space, and since
| G these local distortion should be rotatiol, invariant these measures can be expressed in the eigenvalues-er
Jlsmglﬂax.xalues of the metric. Now that we have for the metricgthat—is-valid- close to p, we
/2 can easily derive Taylor expressions for these eigenvalues and singular values by solving the characteristic
equation, ci < r
O‘ ¥ a oo a oV 1478
Yok mran hal G 22 CProR My (10)
&\ fD 2 which implies that
E )\1 = 1 } .
ifK >0 11
Y = 1- Kl +o(f) 52 ()
and
—1_ K 2 3
M= 1=Kl +O(lP) |y < -
Ay = 1
\QQ /Correspondmg Taylor expansion for the singular values, o; = 1/);, is simply
g1 = 1
ifK >0 13
2 e s ol | B w
and T£ ‘”lﬁ‘i ek (K (1 t(’otk state l'{g -:v'a"mf'if? §ut T O‘Cyﬁ do((wj
o = 1— Kl + o) \ op < 14)
Oy = 1 -

We will now derive Taylor expressions for a number of previously defined distortion measures. In general,
they all attain their minimum when the metric is the unit matrix and thus they are all minimal in RNC

gosetad. far P Q (or U0) ]
ormanns MIPS metrics [Hormann and Greiner, 2000], K and Kp¢f 5

r(q&.ma ‘ﬂq e Ka= U—; =1+ IIuII"’% +O(|[ulf®). (15)
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g1 02 4“(2| 5
Ky =—+ = =2+4||u||*—= + O(|[u]]). 1

Conformal energy [Pinkall and Polthier, 1993]: /% 5!_0‘64/; éj

K®
Ko =(01—02)’/2= —5 Il + O(lul[®). (17)

Green — Lagrange deformation tensor [Maillot et al., 1993]:

2
Ka = (o1 = 1)+ (03 = 1)” = [ ful| + O ul["). (18)

Combined Energy [Degener et al., 2003):

0 0+1 2
1 2 0+ 1)K
Ky = (ﬂ + 2) (0102 - ) =20 4 L]Iu”‘l + O(|[u][®). (19)
g2 01 0102 72
Dirichlet energy [Pinkall and Polthier, 1993]:
1 K
Ep = §(Uf+U§) = 1= =llull®+O(|ulF). (20)
Stretch energies [Sorkine et al., 2002; Sander et al., 2001]:
K
Ez:\/ED=1—EIIHH2+0(||UH3)- (21)
K
XN, Boo = 01 = max(1,1 - —|[u] > + O([ul*). (22)
= 6
o
Nz K
N Bs = max(or,03") = 1+ XLl + O jul) (23)

0_‘2'0——>The Riemannian metric between the unit matrix and the metric tensor. This quantity has not been used

previously in the texture mapping literature, but is commonly used in Diffusion Tensor MRI to measure the
distance between two tensors. It amounts to the geodesic length between two positive definite matrices, when

a certain metric is assumed in the space of all positive definite matrices. (Add citation, check calculation!!):
— -

, Dre = [log* X1 +1og” Xo] > = Kl juj2 4 oy, (21)
C’&(fw«/‘ ;\.awi7[2~,75 K fha fwo (oot or heighe <r5en c,rfx('dﬁ’é £

In summary, all of the above distortion measures are radially dependent™in.RNC close to p. They are all

c& o ;QM} t least second-order flat close to p. Finally they all depend on the Gaussian curvature K. having smaller

f\ ’\»&4—5&\“

;e 1stortion t ss curvature we have on the surface. ;They are not at all dependent on the mean curvature,
(/(@Crief\u.l\ e

L.e. they do not depend on the particular embedding of the surface in space. These characteristics are not
unique to RNC. However, a simple orthogonal projectiion from the surface to the tangent plane will not have
these properties, e.g. the distortion will generically npt be radially dependent.
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3.4 On global optimality of F 3 éﬂM

(Reformulate, this is exactly like in my thesis...) One may ask why the log map is useful to perform dimension
reduction and visualization for data points. Suppose we are looking for some mapping f : M — R™ such
that

(1) 1) =0, defive - @, A andf

7

(2) d(p,z) = lf()Il,
(3) d(y,2) ~[|f(y) — f(z)|| when y ~ p.

In short, this would be a mapping that preserves all distances exactly between points z € M and the base
point p € M. For points y € M that are close to p, distances are approximately preserved. It turns out that
this mapping is the logp(x) mapping and it is expressed in the following theorem.

Theorem: Suppose f : M — R™ is a continuous mapping and f(p) = 0. Then

d(z,y) = [If(z) = FWI + IF ®)II*B(=,v), (25)
for some bounded function B, if an only if
f(@) = Alog,(z), A € O(n), (26)
where O(n) is the group of orthogonal transformations, ATA = I.
Proof:
AB : d(z,y) = |If(z) — fF@)l + | fW)|*B(z,y) & (27)
via taylor approximation on both sides
3B, - d(z,p) + (Vyd(z, ), log, (y)) = (28)
o @) | .
I1f ()] 7@l +Bi(z,y)llf W)l < (29)
_(logy(2),log,(y))  (f(), f(y)) 2
3B, : o) = 7@l + Ba(z, y)Ilf W)II* < (30)
3IBs : <10gp($)7103p(y)> _ (f=@), f(y) + Bs(z,9)||f(v)]| & (31)

d(z,p)d(y,p)  |IF@IIf W)l
f(z) = Alog,(z), A € O(n), (32)

The <= in the last step is obvious, while the = follows from the fact that the expression should be valid for
y arbitrary close to the base point p.

From this result we can state that LogMaps, or rather the true log,, (), is the optimal mapping in the above
sense, i.e. it is the most linear mapping centered at the base point p.

3.5 Noise

Several kinds of noise will affect the quality of the logmap. | O I./[Qn—ﬁ(-,y"i [lé»’-’i()\r .
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Geometric noise. %.due to the quality of the mesh model. The mesh may exhibit a granular structrue
‘3‘&&7, for instance, noise during the digitization of an object.

Discretization error (geometry). , an insufficient number of triangles in the model make the surface non-
smooth. This error applies both to the distances computed and the discretization (stencil) of the gradient
operator.

tion. This error can range from significant, for instance, when the Dijkstra algorithm is used, to low when —
the proposed method by Reimers is used. There also exist algorithms for triangular meshes that deliver
exact distances, up to numerical precision.

- X 0 @ k
Interpolation or mpﬂel error (distances). , from the choice of implementation of geodesic distance computa- %

Truncation error. , if the iterative procedure for calculating the distances is terminated before convergence,

a truncation error occurs. ~ (ye (| Mot OC(,SL,,VQ C M&r&ﬂ'% (e. 4. FMM) hasse a«/wg,j WJ&

Round-off erpefrs. , from the implementation of floating point numbers. For this application, the LOGMAP, ‘?J‘ICS)@
this noise ost always orders of magnltude lower than the other kinds of noise presented above.

There are different ways to combat ?iglse For the LOGMAP algorithm, it is up to the user to decide what
to consider as geometric noise. Discretization and model errors are more objective in nature. The single
most sensitive step in the LOGMAP algorithm is the gradient calculation, which is known to be an operator
prone to noise in signal and image processing. Ways to combat noise include: increasing mesh resolution,
smoothing the mesh to remove geometric noise and remove sharp edges and design robust ways to estimate

the gradient. The latter include smoothing calculated distance maps, choosing a large il for the gradient k ol Qe
g§§ima$i9n_ﬁndp0ss1bly also increase the number of points in the stenc1l Further improvements include to } -

adaptively increase resolution of the mesh close to the point p, to unprove the angular resolution of the ﬂ&‘d‘%
gradient estimation, which is particularly important for distance computation sch\emes such as Dijkstras W 2
algorithm and Fast Marching where the error close to a point source can be significant. ’

4. METHOD
We derive a concise formula for how log,(x) can be computed by considering some results related to how

the so called intrinsic mean is computed [Karcher, 1977; Fletcher et al., 2004]. Let {x;} be N data points
in a surface S and seek the minimizer to the function

o) =5y Zdz (P, ), (33)

where d?(p, x;) is the squared geodesic distance between points p and z;. It is then shown in [Karcher, 1977]
that the gradient of f is

N
1
— 2 log, (). (34)
i=1
Setting N =1 and 1 = x gives the following formula,

log,(z) = —%Vpd2(p, x). (35)

Here the subscript on the del operator is used to note that the gradient of the squared distance function is
evaluated with respect to the point p on S.
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